1. Find a probability model for the experiment of problem 2-4, p. 73. (This was one of the cancelled parts of the previous assignment.)

The probability model consists of:
Variable name: $\quad \underline{\mathbf{N}}=\left(\mathbf{N}_{\mathbf{1}}, \mathbf{N}_{\mathbf{2}}\right)$
Sample space: sample space

$$
\begin{aligned}
S= & \{(1,1),(2,1),(\mathbf{2}, 2),(3,1),(3,2),(\mathbf{3}, 3),(4,1),(4,2),(4,3),(4,4),(5,1), \\
& (5,2),(5,3),(5,4),(5,5),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}
\end{aligned}
$$

Probability law: $\quad \mathbf{P}(\mathbf{i}, \mathbf{j}))=\frac{\mathbf{1}}{\mathbf{i}} \quad$ for $\quad \mathbf{j}=\mathbf{1}, \ldots, \mathbf{i}$
(as mentioned in class, for a discrete-valued experiment like this, it is enough to list the probability of each individual outcom.)
2. 2-20, p. 75 .

Since it's hard to draw Venn diagrams with the word processor, so I'll do these by formulas:
$\mathbf{P}\left(\mathbf{A}^{\mathbf{c}} \cup \mathbf{B}^{\mathbf{c}}\right)=\mathrm{P}\left((\mathrm{A} \cap \mathrm{B})^{\mathrm{c}}\right)$ by DeMorgan's law

$$
=1-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathbf{1 - z}
$$

$\mathbf{P}\left(\mathbf{A} \cap \mathbf{B}^{\boldsymbol{c}}\right)=\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathbf{x}-\mathbf{z}$
$\mathbf{P}\left(\mathbf{A}^{\mathbf{c}} \cup \mathbf{B}\right)=1-\mathrm{P}\left(\left(\mathrm{A}^{\mathrm{c}} \cup \mathrm{B}\right)^{\mathrm{c}}\right)=1-\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}\right)=1-(\mathrm{x}-\mathrm{z})=\mathbf{1}-\mathbf{x}+\mathbf{z}$
$\mathbf{P}\left(\mathbf{A}^{\mathbf{c}} \cap \mathbf{B}^{\mathbf{c}}\right)=1-\mathrm{P}\left(\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}\right)^{\mathrm{c}}\right)=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})=1-(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}))=\mathbf{1}-\mathbf{x}-\mathbf{y}+\mathbf{z}$
3. Find a probabilitiy model for the experiment for problem 2-23, p. 75. Then do the problem.

Probability model:
Variable: $\underline{X}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)$
Sample space: $\mathrm{S}=\{$ HHHH, HHHT, HHTH, HHTT, ... , TTTT $\}$
$=$ set of all sequences of length 4 where each term is H or T
Probability law: $P(\underline{x})=\frac{1}{16}$ for any $\underline{x} \in S$
$\mathbf{P}\left(\mathbf{A}_{\mathbf{2}}\right)=\mathrm{P}(\{\mathrm{HHHH}$, HHHT, HHTH, HHTT, THHH, THTH, THHT $\})=8 \times \frac{1}{16}=\frac{\mathbf{1}}{\mathbf{2}}$
$\mathbf{P}\left(\mathbf{A}_{\mathbf{1}} \cap \mathbf{A}_{\mathbf{3}}\right)=\mathrm{P}(\{$ HHHH, HHHT, HTHH, HTHT $\})=4 \times \frac{1}{16}=\frac{\mathbf{1}}{\mathbf{4}}$
$\mathbf{P}\left(\mathbf{A}_{1} \cap \mathbf{A}_{\mathbf{2}} \cap \mathbf{A}_{\mathbf{3}} \cap \mathbf{A}_{4}\right)=\mathrm{P}(\{\mathrm{HHHH}\})=\frac{\mathbf{1}}{\mathbf{1 6}}$
$\mathbf{P}\left(\mathbf{A}_{1} \cup \mathbf{A}_{\mathbf{2}} \cup \mathbf{A}_{3} \cup \mathbf{A}_{\mathbf{4}}\right)=\mathrm{P}(\{T T T T\} \mathrm{c})=1-\mathrm{P}(\{\mathrm{TTTT}\})=1-\frac{1}{16}=\frac{\mathbf{1 5}}{\mathbf{1 6}}$
4. 2-24, p. 75, except assume that $A=\{k>2\}$ and $B=\{k>4\}$ (Hint: The experiment described here is closely related to that in the previous problem.)
Consider the sample space of all possible outcomes of four tosses:

$$
\mathrm{S}=\{\mathrm{HHHH}, \mathrm{HHHT}, \text { HHTH, HHTT, ..., TTTT }\}
$$

Each of these outcomes has equal probability, namely, $1 / 16$.
While the experiment that is described in the problem can involve many more than four tosses, we observe that that the events $\mathrm{A}=\{\mathrm{k}>2\}$ occurs precisely when the event $\mathrm{A}^{\prime}=\{$ TTHT, TTHH, TTTH, TTTT $\}$ of the sample space S occurs. Therefore,

$$
\mathbf{P}(\mathbf{A})=\mathrm{P}\left(\mathrm{~A}^{\prime}\right)=\frac{4}{16}=\frac{\mathbf{1}}{\mathbf{4}}
$$

Similarly, the event $B=\{k>4\}$ occurs precisely when the event $B^{\prime}=\{$ TTTT $\}$ occurs. So

$$
\mathbf{P}(\mathbf{B})=\mathrm{P}\left(\mathrm{~B}^{\prime}\right)=\frac{\mathbf{1}}{\mathbf{1 6}} \text { and } \mathbf{P}\left(\mathbf{B}^{\boldsymbol{c}}\right)=1-\mathrm{P}(\mathrm{~B})=\frac{\mathbf{1 5}}{\mathbf{1 6}} .
$$

Also, $\mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=\mathrm{P}(\{T T T T\})=\frac{\mathbf{1}}{\mathbf{1 6}}$, and $\mathbf{P}(\mathbf{A} \cup \mathbf{B})=\mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right)=\mathrm{P}(\{T T H T$, TTHH, TTTH, TTTT $\})=\mathrm{P}\left(\mathrm{A}^{\prime}\right)=\frac{\mathbf{1}}{\mathbf{4}}$
5. 2-29, p. 76.

Probability model (it's not required but it's a good idea):
Variable $T=$ life time, \quad Sample space $S=(0, \infty)$,
Prob. Law: $\mathrm{P}((\mathrm{t}, \infty))=\mathrm{e}^{-\mathrm{t}}$, for any $\mathrm{t} \geq 0$. This implies $\mathrm{P}((\mathrm{a}, \mathrm{b}])=\mathrm{e}^{-\mathrm{a}}-\mathrm{e}^{\mathrm{b}}, 0 \leq \mathrm{a} \leq \mathrm{b}<\infty$.
$\mathrm{A}=(5, \infty), \mathrm{B}=(10, \infty)$
a. $\mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathrm{P}((5, \infty) \cap(10, \infty))=\mathrm{P}((10, \infty))=\mathbf{e}^{\mathbf{- 1 0}}$
$\mathbf{P}(\mathbf{A} \cup \mathbf{B})=\mathrm{P}((5, \infty) \cup(10, \infty))=\mathrm{P}((5, \infty))=\mathbf{e}^{-5}$
b. $\quad \operatorname{Pr}($ lifetime greater than 5 but less than or equal to $\mathbf{1 0})=P((5,10])=e^{-5}-e^{-10}$
6. Which of the following are true statements?
(a) If $E \subset F$, then $F^{c} \subset E^{c}$. TRUE
(b) $\mathrm{F}=\mathrm{F} \cap \mathrm{E} \cup \mathrm{F} \cap \mathrm{E}^{\mathrm{c}} . \quad$ TRUE
(c) $\mathrm{E} \cup \mathrm{F}=\mathrm{E} \cup \mathrm{F} \cap \mathrm{E}^{\mathrm{c}}$. TRUE
(d) If $\mathrm{E} \cap \mathrm{F}=\phi$ and $\mathrm{F} \cap \mathrm{G}=\phi$, then $\mathrm{E} \cap \mathrm{G}=\phi$. FALSE counter example: $\mathrm{E}=(0,3), \mathrm{F}=(5,7), \mathrm{G}=(2,4)$
(e) If $\mathrm{E} \subset \mathrm{F}$, then $\mathrm{E} \cap \mathrm{G} \subset \mathrm{F} \cap \mathrm{G}$. TRUE
(f) If $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$, then A and B are disjoint. FALSE this does imply $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$, but the set $\mathrm{A} \cap \mathrm{B}$ need not be empyt.
7. A 5-sided die is tossed and the outcome is the number facing down. We are given the probabilities of the following events.

$$
P(o d d)=.7, \quad P(\{1,5\})=.4,
$$

Find the probabilities of as many of the following events as possible.

$$
\{1\},\{2\},\{3\},\{4\},\{5\},\{1,3\},\{2,4\},\{2,5\}
$$

$$
\begin{aligned}
& \mathbf{P}(\{\mathbf{3}\})=\mathrm{P}(\text { odd })-\mathrm{P}(\{1,5\})=.7-.4=.3 \\
& \mathbf{P}(\{\mathbf{2}, \mathbf{4}\})=\mathrm{P}(\text { even })=1-\mathrm{P}(\text { odd })=1-.7=. \mathbf{3}
\end{aligned}
$$

These are the only ones we can find. (We can't assume the dice is "fair".)
8. Suppose A and B are subsets of a sample space S and $P(A)=1$. Use the axioms of probability to prove the following:
(a) $\quad P(A \cup B)=1$.

A good way to prove this is to separately prove the two statements: $\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \leq 1$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \geq 1$. The first follows directly from the corollary that says that the probability of any set is less than or equal to 1 . The second statement can be proved as follows:
$\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \geq \mathrm{P}(\mathrm{A})=1 \quad$ because $\mathrm{A} \subset \mathrm{B}$ and a corollary says $\mathrm{P}(\mathrm{E}) \leq \mathrm{P}(\mathrm{F})$ when $\mathrm{E} \subset \mathrm{F}$
Since $P(A \cup B) \leq 1$ and $P(A \cup B) \geq 1$, it follows that $P(A \cup B)=1$.
(b) $\quad P(A \cap B)=P(B)$.

We use the same approach. $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{B})$ because $\mathrm{A} \cap \mathrm{B} \subset \mathrm{B}$ and because of the corollary mentioned above. By another corollary

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) \quad \geq 1+\mathrm{P}(\mathrm{~B})-1=\mathrm{P}(\mathrm{~B}), \quad \text { since } \mathrm{P}(\mathrm{~A})=1 \& \mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) \leq 1 .
$$

Since $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{B})$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq \mathrm{P}(\mathrm{B})$, it follows that $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B})$.
These facts will be useful later in the course.
9. Suppose A and B are subsets of a sample space S and $P(A)=0$. Use the axioms of probability to prove the following:
(a) $\quad P(A \cup B)=P(B)$.

We use the same approach. $\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \geq \mathrm{P}(\mathrm{B})$, because $\mathrm{B} \subset A \cup B$ and because of the corollary.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \text { by a corollary } \\
& \quad \leq 0+\mathrm{P}(\mathrm{~B})-0=\mathrm{P}(\mathrm{~B}), \text { because } \mathrm{P}(\mathrm{~A})=0 \text { \& because the } 1 \text { st axiom says } \mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \geq 0
\end{aligned}
$$

Since $\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \leq \mathrm{P}(\mathrm{B})$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \geq \mathrm{P}(\mathrm{B})$, it follows that $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{B})$.
(b) $\quad P(A \cap B)=0$.

We use the same approach. $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq 0$ by the 1 st axiom of probability.
$\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{A})=0$, because $\mathrm{A} \cap \mathrm{B} \subset \mathrm{A}$ and because of the aforementioned corollary.
Since $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq 0$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq 0$, it follows that $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$.
These facts will be useful later in the course.
10. A certain store accepts either the American Express or the VISA credit card. It finds that when a customer enters the store, the probability is . 24 that he/she carries an American Express card, 61 that he/she carries a VISA card, . 11 that he/she carries both, and . 45 that he she/carries a Master card. What is the probability that a customer carries a credit card that the store will accept?

From the problem statement we deduce

$$
\begin{array}{ll}
\mathrm{A}=\text { event customer carries AmEx, } & \mathrm{P}(\mathrm{~A})=.24, \\
\mathrm{~V}=\text { event customer carries Visa, } & \mathrm{P}(\mathrm{~V})=.61, \\
\mathrm{AV}=\text { event customer carries AmEx and Visa, } & \mathrm{P}(\mathrm{AV})=.11 . \\
\mathrm{M}=\text { event customer carries } \mathrm{MC}, & \mathrm{P}(\mathrm{MC})=.45
\end{array}
$$

Also we deduce that $\mathrm{AV}=\mathrm{A} \cap \mathrm{V}$
We want to find the probability of the event that customer carries AmEX or Visa. We recognize this as the event $A \cup V$, and we find

$$
\mathbf{P}(\mathbf{A} \cup \mathbf{V})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~V})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~V})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~V})-\mathrm{P}(\mathrm{AV})=.24+.61-.11=.74
$$

11. You are on a trip from Detroit to Denver with a change of planes in Chicago. The plane from Detroit to Chicago arrives randomly between 12:00 noon and 1:00 PM. The connecting plane form Chicago leaves randomly between 1:00 PM and 2:00 PM. To make the connection, at least 30 minutes are required between planes. What is the probability that you will miss your connection? (Hint: It might be wise to make a probability model before attempting to find the answer.)

Probability Model: Variable (A,D) where $\mathrm{A}=$ time you arrive, $\mathrm{D}=$ time plane departs.
Sample space: $\mathrm{S}=\{(\mathrm{a}, \mathrm{d}): 0 \leq \mathrm{a} \leq 1,1 \leq \mathrm{d} \leq 2\},(0=$ noon $)$
Probability law (this is a key part): for any subset B of $S, \quad P(B)=\frac{|B|}{|S|}=$ area of B
Why this law? because all sets of the same area should have the same probability
$\operatorname{Pr}($ miss your connection $)=P(\{(a, d): d<a+.5, \quad 0 \leq a \leq 0,1 \leq d \leq 2\})$

$$
=\text { area of shaded region below }=\frac{\mathbf{1}}{\mathbf{8}}
$$

