Reading Assignment: Read Sections 2.4, 2.5, 2.6.
Things to practice on your own: examples that require counting, experiments that require conditional probability.

1. 2-32, p. 76, L-G
2. 2-35, p. 76, L-G

3 2-38, p. 76, L-G
4. 2-40, p. 77, L-G
5. 2-43, p. 77, L-G
6. 2-54, p. 78, L-G (Note: Corollary 1 is in Section 2.2.)
7. A circular pan of water with radius 10 inches is stirred and the position of a floating spec is recorded after the water has come to rest.
(a) Determine the conditional probability that the spec is more than 1 inch from the center given that it is less than the 3 inces from the center.
(b) Determine the conditional probability that the spec is both to the north and east of the landing point, given that it is less than 5 inches from the center.
8. 2-49, p. 77, L-G.
9. 2-50, p. 77, L-G.
10. 2-51, p. 77, L-G.
11. $2-56$, p. 78, L-G
12. A store opens at time 0 and never closes. The probability that the first customer to enter the store arrives between times t_{1} and t_{2} is
$\int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \mathrm{e}^{-\mathrm{t}} \mathrm{dt}$, where $0 \leq \mathrm{t}_{1} \leq \mathrm{t}_{2}<\infty$. (Time is measured continuously from 0 .)
(a) Find the probability that the first customer arrives between times t and $t+1$ given that no customer arrive at or before time t.
(b) Discuss the dependence of your answer on t.
13. 2-57a., p. 78, L-G

