In this version, the answer to problem $4 b$ has been corrected.

1. 3.25 , p. 177

Assuming $\mathrm{p}=1 / 2$

$$
f_{X}(x)=\sum_{i=0}^{8}\binom{8}{i} 2^{-8} \delta(x-i)
$$

2. 3.34 (a) and (c), p. 178

A geometric random variable has probability mass function of the form $\mathrm{p}_{\mathrm{N}}(\mathrm{n})=(1-\mathrm{p})^{\mathrm{n}-1} \mathrm{p}, \mathrm{n}=1,2, \ldots$ where p is a parameter, $0<\mathrm{p}<1$
or
$\mathrm{p}_{\mathrm{N}}(\mathrm{n})=(1-\mathrm{p})^{\mathrm{n}} \mathrm{p}, \mathrm{n}=0,1, \ldots$ where p is a parameter, $0<\mathrm{p}<1$
Both are valid.
(a) Assuming the former

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{N}>\mathbf{k}) & =\sum_{\mathrm{n}=\mathrm{k}+1}^{\infty}(1-p)^{\mathrm{n}-1} p, \text { let } m=n-k \\
& =\sum_{m=1}^{\infty}(1-p)^{\mathrm{m}+\mathrm{k}-1} p=(1-p)^{k} \sum_{m=1}^{\infty}(1-p)^{m-1} p \\
& =(\mathbf{1}-\mathbf{p})^{\mathbf{k}} \quad \text { since } \quad \sum_{m=1}^{\infty}(1-p)^{m-1} p=\sum_{m=1}^{\infty} p_{N}(m)=1
\end{aligned}
$$

Or, assuming the latter

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{N}>\mathbf{k}) & =\sum_{\mathrm{n}=\mathrm{k}+1}^{\infty}(1-p)^{\mathrm{n}} \mathrm{p}, \text { let } \mathrm{m}=\mathrm{n}-\mathrm{k}-1 \\
& =\sum_{\mathrm{m}=0}^{\infty}(1-\mathrm{p})^{\mathrm{m}+\mathrm{k}+1} \mathrm{p}=(1-p)^{\mathrm{k}+1} \sum_{\mathrm{m}=0}^{\infty}(1-p)^{\mathrm{m}} p \\
& =(\mathbf{1}-\mathbf{p})^{\mathbf{k}+\mathbf{1}} \quad \text { since } \sum_{\mathrm{m}=0}^{\infty}(1-p)^{m} \mathrm{p}=\sum_{m=0}^{\infty} p_{N}(m)=1
\end{aligned}
$$

(c) Assuming the former
$\operatorname{Pr}(\mathbf{N}$ is even $)=\operatorname{Pr}(\mathrm{N}=2$ or 4 or 6 or $\ldots)=\sum_{\mathrm{n}=1}^{\infty} \mathrm{p}_{\mathrm{N}}(2 \mathrm{n})=\sum_{\mathrm{n}=1}^{\infty}(1-\mathrm{p})^{2 \mathrm{n}-1} \mathrm{p}$

$$
\begin{aligned}
& =p(1-p)^{-1} \sum_{n=1}^{\infty}\left((1-p)^{2}\right)^{n} \\
& =p(1-p)^{-1}\left(\frac{1}{1-(1-p)^{2}}-1\right) \text { using } \sum_{i=1}^{\infty} \alpha^{i}=\frac{1}{1-\alpha}-1 \\
& =p(1-p)^{-1} \frac{1-2 p+p^{2}}{2 p-p^{2}}=\frac{p}{2}
\end{aligned}
$$

Or, assuming the latter
$\operatorname{Pr}(\mathbf{N}$ is even $)=\operatorname{Pr}(\mathrm{N}=0$ or 2 or 4 or 6 or $\ldots)=\sum_{\mathrm{n}=0}^{\infty} \mathrm{p}_{\mathrm{N}}(2 \mathrm{n})=\sum_{\mathrm{n}=0}^{\infty}(1-\mathrm{p})^{2 \mathrm{n}} \mathrm{p}$

$$
\begin{aligned}
& =p \sum_{n=1}^{\infty}\left((1-p)^{2}\right)^{n}=p\left(\frac{1}{1-(1-p)^{2}}\right) \quad \text { using } \sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha} \\
& =\frac{p}{2 p-p^{2}}=\frac{\mathbf{1}}{\mathbf{2 - p}}
\end{aligned}
$$

3. 3.35 , p. 178

A geometric random variable X has probability mass function

$$
\mathrm{p}_{\mathrm{X}}(\mathrm{x})=\mathrm{p}(1-\mathrm{p})^{\mathrm{k}}, \mathrm{k}=0,1,2, \ldots \quad \text { where } \mathrm{p} \text { is some parameter, } 0<\mathrm{p}<1
$$

(One can also solve this problem assuming the other form of the geom. pmf.)
If $\mathrm{k}>0$ and $\mathrm{j}>0$, then

$$
\begin{aligned}
& \begin{aligned}
& P(M \geq k)= \sum_{i=k}^{\infty} p(1-p)^{i-1}=\sum_{i=0}^{\infty} p(1-p)^{i+k-1} \\
& \quad\left(\text { since both summations start with } p(1-p)^{k}+p(1-p)^{k+1}+\ldots\right) \\
&=(1-p)^{k-1} \sum_{i=0}^{\infty} p(1-p)^{i}=(1-p)^{k-1} p \frac{1}{1-(1-p)} \quad\left(\text { because } \sum_{i=0}^{\infty} q^{i}=\frac{1}{1-q}\right) \\
&=(1-p)^{k-1}
\end{aligned} \\
& \begin{aligned}
& P(M \geq k+j \mid M>j)= \frac{P(M \geq k+j, M>j)}{P(M>j)}=\frac{P(M \geq k+j)}{P(M>j)}=\frac{\sum_{i=k+j}^{\infty} p(1-p)^{i-1}}{\sum_{i=j+1}^{\infty} p(1-p)^{i-1}}=\frac{\sum_{i=k+j}^{\infty}(1-p)^{i-1}}{\sum_{i=j+1}^{\infty}(1-p)^{i-1}} \\
&=\frac{\sum_{i=j+1}^{\infty}(1-p)^{i-1}(1-p)^{k-1}}{\sum_{i=j+1}^{\infty}(1-p)^{i-1}}=(1-p)^{k-1}=P(M \geq k)
\end{aligned}
\end{aligned}
$$

We think of M as the time occurrence of an event. We say M is memoryless because if we have been waiting j time units without the event occurring (i.e. if $\mathrm{M}>\mathrm{j}$), then the probability that the event does not occur in the next $k-1$ time units (i.e. that $\mathrm{M} \geq \mathrm{k}+\mathrm{j}$) is independent of the amount of time j that we have so far waited. There is no "memory" of the fact that we have so far waited j time units.
4. 3.37 , p. 178

Let X be a random variable representing the number of messages that arrive in a 1 second interval. The problem tells us that X is a Poisson random variable with pmf

$$
\mathrm{p}_{\mathrm{X}}(\mathrm{k})=\frac{15^{\mathrm{k}}}{\mathrm{k}!} \mathrm{e}^{-15}, \mathrm{k}=0,1,2, \ldots
$$

(a) $\operatorname{Pr}($ no messages arrive in $1 \mathbf{s e c})=\operatorname{Pr}(X=0)=p_{X}(0)=\mathbf{e}^{-15}=\mathbf{3 . 0 6} \times 10^{-7}$
*** (b) $\operatorname{Pr}($ more than 10 messages arrive in 1 sec $)=\operatorname{Pr}(X>10)=1-\operatorname{Pr}(\mathrm{X} \leq 10)$

$$
=1-\sum_{i=0}^{10} p_{X}(k)=1-\sum_{i=0}^{10} \frac{15^{k}}{k!} e^{-15}=\mathbf{. 8 8 1 5}
$$

5. 3.38 , p. 178 , just for $\mathrm{k}=0$ and 3 .

	$\mathrm{n}=10$		$\mathrm{p}=.1$	$\mathrm{n}=20$		$\mathrm{p}=.05$
$\mathrm{n}=100$,	$\mathrm{p}=.01$					
$\mathrm{k}=$	0	3	0	3	0	3
binomial	.3487	.0574	.3585	.06	.366	.061
Poisson	.3679	.0613	.3679	.0613	.3679	.0613

6. 3.40 , p. 178. Insert the words "at the end of the day" after "The number of orders waiting". and next time change 90% to 10%, because the question is much more interesting and the answer is much more interesting

We want to choose n so that $\mathrm{P}($ number of orders waiting > 4) < 0.9 . Notice that
$\mathrm{P}($ number of orders waiting $>4)=1-\mathrm{P}($ number orders waiting $\leq 4)$

$$
=1-\sum_{k=0}^{4} P(k \text { orders are waiting })=1-\sum_{k=0}^{4} \frac{\alpha^{k}}{k!} e^{-\alpha}=1-\sum_{k=0}^{4} \frac{(3 / n)^{k}}{k!} e^{-3 / n}
$$

Let's try $\mathrm{n}=1$, then $\mathrm{n}=2$, then $\mathrm{n}=3$, etc. It turns out that $\mathrm{n}=1$ gives
$\mathrm{P}($ number of order waiting $>4)=1-e^{-3}-3 e^{-3}-\frac{9}{2} e^{-3}-\frac{9}{2} e^{-3}-\frac{27}{8} e^{-3}$

$$
=1-\mathrm{e}^{-3}\left(1+3+9+\frac{27}{8}\right)=.185
$$

Since this is less than .9 , one employee is sufficient.
Assuming $\mathrm{n}=1$ employee,

$$
\begin{aligned}
\mathbf{P}(\text { no orders waiting }) & =\frac{(3 / n)^{k}}{k!} e^{-3 / n} \text { with } k=0 \\
& =e^{-3}=\mathbf{0 . 0 5 0}
\end{aligned}
$$

7. 3.44 , p. 179 just $\mathrm{P}(\mathrm{X}<\mathrm{m})$ and $\mathrm{P}(|\mathrm{X}-\mathrm{m}|>\mathrm{k} \sigma)$ for $\mathrm{k}=1,3,5$

Since X is Gaussian with mean m and variance σ^{2}, it is a continuous random variable with pdf

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-m)^{2}}{2 \sigma^{2}}\right\}
$$

Note that since X is a continuous random variable we know $P(X=x)=0$ for all x. So $P(X \leq x)=$ $\mathrm{P}(\mathrm{X}<\mathrm{x})$ which simplifies things a bit.
(a) $\mathbf{P}(\mathbf{X}<\mathbf{m})=\int_{-\infty}^{m} f_{X}(x) d x=\frac{\mathbf{1}}{\mathbf{2}} \quad \begin{aligned} & \text { because } f_{X}(x) \text { is symmetric about the point } x=m \text {; } \\ & \text { i.e. so it has half its probability to the left of } m\end{aligned}$
(b) $\mathrm{P}(|\mathrm{X}-\mathrm{m}|>\mathrm{k} \sigma)=\mathrm{P}(\mathrm{X}<\mathrm{m}-\mathrm{k} \sigma$ or $\mathrm{X}>\mathrm{m}+\mathrm{k} \sigma)=\mathrm{P}(\mathrm{X}<\mathrm{m}-\mathrm{k} \sigma)+\mathrm{P}(\mathrm{X}>\mathrm{m}+\mathrm{k} \sigma)$

$$
\begin{aligned}
& =\int_{-\infty}^{m-k \sigma} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(\mathrm{x}-\mathrm{m})^{2}}{2 \sigma^{2}}\right\} \mathrm{dx}+\int_{\mathrm{m}+\mathrm{k} \sigma}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(\mathrm{x}-\mathrm{m})^{2}}{2 \sigma^{2}}\right\} \mathrm{dx} \\
& =\int_{-\infty}^{-\mathrm{k}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\mathrm{u}^{2}}{2}\right\} \mathrm{du} \sigma+\int_{\mathrm{k}}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\mathrm{u}^{2}}{2}\right\} \mathrm{du} \sigma
\end{aligned}
$$

where we let $u=(x-m) / \sigma$ when changing variables in the integrals

$$
\begin{aligned}
& =\int_{-\infty}^{-\mathrm{k}} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{\mathrm{u}^{2}}{2}\right\} \mathrm{du}+\int_{\mathrm{k}}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{\mathrm{u}^{2}}{2}\right\} \mathrm{du} \\
& =2 \int_{\mathrm{k}}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{\mathrm{u}^{2}}{2}\right\} \mathrm{du} \text { by the symmetry of the integrand } \\
& =2 \mathrm{Q}(\mathrm{k}) \text { by definition of the } \mathrm{Q} \text { function }
\end{aligned}
$$

So now using Table 3.3 on p. 116, we obtain the following table for $\mathrm{P}(|\mathrm{X}-\mathrm{m}|>\mathrm{k} \sigma)=2 \mathrm{Q}(\mathrm{k})$

$\mathrm{k}=$	1	2	3	4	5
$2 \mathrm{Q}(\mathrm{k})$.318	.0456	.0027	.0000634	5.74×10^{-7}

(Only the answers for $\mathrm{k}=1,3,5$ are required.)
This table shows, for example, that the probability of X falling farther than σ from the mean is .318 .
8. 3.45 , p. 179

We need to find P (receiver makes error $\mid 0$ sent). Given that 0 is sent, the event
$\{$ receiver makes error $\} \Leftrightarrow\{$ receiver decides 1$\} \Leftrightarrow\{Y>0\} \Leftrightarrow\{-1+N>0\} \Leftrightarrow\{N>1\}$
where " \Leftrightarrow " means "is equivalent to" or "happens if and only if". Therefore

$$
\mathbf{P}(\text { receiver makes error } \mid 0 \text { sent })=P(N>1)=Q(1)=\mathbf{0 . 1 5 9}
$$

where Q() denotes the Q -function, which is defined on p .115 and tabulated on p .116.
9. Consider a random variable whose cdf is shown in Figure P3.1 on p. 175.
(a) Find its pdf.
X is a mixed random variable. We see that $\operatorname{Pr}(X=0)=\frac{1}{4}$ and $\operatorname{Pr}(X=1)=\frac{1}{2}$. All other points have probability zero. The slope of $\mathrm{F}_{\mathrm{X}}(\mathrm{x})$ is $1 / 4$ for $0<\mathrm{x}<1$. Therefore,

$$
f_{X}(x)=\frac{1}{4} \delta(x)+\frac{1}{2} \delta(x-1)+\left\{\begin{array}{l}
\frac{1}{4}, \quad 0<x<1 \\
0, \text { else }
\end{array}\right.
$$

(b) Find $\operatorname{Pr}(1 / 2 \leq X \leq 1.5)$ by integrating the pdf.

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{1} / \mathbf{2} \leq \mathbf{X} \leq \mathbf{1 . 5}) & =\int_{.5}^{1.5} f_{X}(x) d x \\
& =\int_{.5}^{1.5} \frac{1}{4} \delta(x) d x+\int_{.5}^{1.5} \frac{1}{2} \delta(x-1) d x+\int_{.5}^{1} \frac{1}{4} d x \\
& =0+\frac{1}{2}
\end{aligned}
$$

