1. 3.51 , p. 180 (Hint: use symmetry where possible.)

The possible values of Y are $-3.5 \mathrm{~d},-2.5 \mathrm{~d},-1.5 \mathrm{~d},-.5 \mathrm{~d}, .5 \mathrm{~d}, 1.5 \mathrm{~d}, 2.5 \mathrm{~d}, 3.5 \mathrm{~d}$. So Y is a discrete random variable. To find the pmf of Y , we need to find the probability of every possible value of Y
(a) The pmf of Y is:

$$
\mathbf{p}_{\mathbf{Y}}(\mathbf{- 3 . 5 d})=P(-\infty \leq X \leq-3 d)=\int_{-\infty}^{-3 d} f_{X}(x) d x=\int_{-\infty}^{-3 d} \frac{\alpha}{2} e^{-\alpha|x|} d x=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{e}^{-\mathbf{3 a d}}
$$

by symmetry $\mathbf{p}_{\mathbf{Y}}(\mathbf{3 . 5 d})=p_{Y}(-3.5 \mathrm{~d})=\frac{\mathbf{1}}{\mathbf{2}} \mathrm{e}^{\mathbf{- 3 a d}}$

$$
\begin{aligned}
& \mathbf{p}_{\mathbf{Y}}(\mathbf{- 2 . 5 d})=\mathbf{p}_{\mathbf{Y}}(\mathbf{2 . 5 d})=P(-3 d \leq X \leq-2 d)=\int_{-3 d}^{-2 d} f_{X}(x) d x=\int_{-3 d}^{-2 d} \frac{\alpha}{2} e^{-\alpha|x|} d x=\frac{\mathbf{1}}{\mathbf{2}}\left(\mathbf{e}^{\mathbf{- 2 a d}}-\mathbf{e}^{-\mathbf{3 a d}}\right) \\
& \mathbf{p}_{\mathbf{Y}}(\mathbf{- 1 . 5 d})=\mathbf{p}_{Y}(\mathbf{1 . 5 d})=P(-2 d \leq X \leq-d)=\int_{-2 d}^{-d} f_{X}(x) d x=\int_{-2 d}^{-d} \frac{\alpha}{2} e^{-\alpha|x|} d x=\frac{\mathbf{1}}{\mathbf{2}}\left(\mathbf{e}^{\mathbf{- a d}}-\mathbf{e}^{-\mathbf{2 a d}}\right) \\
& \mathbf{p}_{Y}(\mathbf{- . 5 d})=\mathbf{p}_{Y}(.5 \mathbf{d})=P(-d \leq X \leq 0)=\int_{-d}^{0} f_{X}(x) d x=\int_{-d}^{0} \frac{\alpha}{2} e^{-\alpha|x|} d x=\frac{\mathbf{1}}{\mathbf{2}}\left(\mathbf{1}-\mathbf{e}^{-\mathbf{a d}}\right)
\end{aligned}
$$

and finally $\mathbf{p}_{\mathbf{Y}}(\mathbf{y})=\mathbf{0}$ for all other values of \mathbf{y}
(b) $\mathbf{P}(|\mathbf{X}|>4 \mathbf{d})=2 \int_{4 d}^{\infty} f_{X}(x) d x=\int_{4 d}^{\infty} \frac{\alpha}{2} e^{-\alpha|x|} d x=e^{-4 a d}$
2. 3.53 , p. 180

X , the random variable representing the grades, is Gaussian with mean m and standard deviation σ^{\prime}.
Its pdf is $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}}$.
Let $\mathrm{Y}=\mathrm{aX}+\mathrm{b}$. We wish to choose a and b so that Y is Gaussian with mean m^{\prime} and standard deviation σ.
Solution 1: $F_{Y}(y)=\operatorname{Pr}(Y \leq y)=\operatorname{Pr}(a X+b \leq y)=\operatorname{Pr}\left(X \leq \frac{y-b}{a}\right)=F_{X}\left(\frac{y-b}{a}\right)$.

$$
\begin{aligned}
f_{Y}(y) & =\frac{d}{d y} F_{Y}(y)=\frac{d}{d y} F_{X}\left(\frac{y-b}{a}\right)=\left.\frac{d}{d x} F_{X}(x)\right|_{x=(y-b) / a} \frac{d}{d y} \frac{y-b}{a}=f_{X}\left(\frac{y-b}{a}\right) \frac{1}{a} \\
& =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{((y-b) / a-m)^{2}}{2 \sigma^{2}}} \frac{1}{a} \\
& =\frac{1}{\sqrt{2 \pi} a \sigma} e^{-\frac{(y-a m-b)^{2}}{2 a^{2} \sigma^{2}}} .
\end{aligned}
$$

We recognize the above as a Gaussian density with mean $\mathrm{am}+\mathrm{b}$ and standard deviation $\mathrm{a} \sigma$.
Equation $\mathrm{m}^{\prime}=\mathrm{am}+\mathrm{b}$ and $\sigma^{\prime}=\mathrm{a} \sigma$ yields $\mathbf{a}=\frac{\sigma^{\prime}}{\sigma}, \quad \mathbf{b}=\mathrm{m}^{\prime}-\mathrm{am}=\mathbf{m}^{\prime}-\frac{\sigma^{\prime}}{\sigma} \mathbf{m}$

Solution 2: $\quad \mathrm{m}^{\prime}=\mathrm{E}[\mathrm{Y}]=\mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{a}[\mathrm{X}]+\mathrm{b}$ by linearity of expectation

$$
=a \mathrm{~m}+\mathrm{b}
$$

$$
\left(\sigma^{\prime}\right)^{2}=\operatorname{var}(\mathrm{Y})=\mathrm{E}(\mathrm{Y}-\mathrm{E}[\mathrm{Y}])^{2}=\mathrm{E}\left(\mathrm{aX}+\mathrm{b}-(\mathrm{a} \mathrm{E}[\mathrm{X}]+\mathrm{b})^{2}=\mathrm{E}(\mathrm{a}(\mathrm{X}-\mathrm{E}[\mathrm{X}]))^{2}\right.
$$

$=\mathrm{a}^{2} \mathrm{E}(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{2}$ by linearity of expectation
$=a^{2} \sigma^{2}$
Solving for a and b yields, $\mathbf{a}=\frac{\sigma^{\prime}}{\sigma}, \quad \mathbf{b}=\mathbf{m}^{\prime}-\frac{\sigma^{\prime}}{\sigma} \mathbf{m}$
3. 3.56 , p. 180
$\mathrm{P}=\mathrm{RX}^{2}$ where X is Gaussian with $\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\mathrm{x}^{2} / 2 \sigma^{2}}$.
First we find the cdf:

$$
\text { for } \begin{aligned}
y \geq 0, \quad F_{P}(y) & =P(P \leq y)=P\left(R X^{2} \leq y\right)=P(-\sqrt{y / R} \leq X \leq \sqrt{y / R}) \\
& =F_{X}(\sqrt{y / R})-F_{X}(-\sqrt{y / R})
\end{aligned}
$$

and for $\mathrm{y}<0, \mathrm{~F}_{\mathrm{P}}(\mathrm{y})=0$
Then we take the derivative of the cdf to obtain the pdf:

$$
\text { for } \begin{aligned}
& \mathbf{y} \geq \mathbf{0}, \\
& \mathbf{f}_{\mathbf{P}}(\mathbf{y})=\frac{d}{d f} \mathrm{~F}_{\mathrm{P}}(\mathrm{y})=\mathrm{f}_{\mathrm{X}}(\sqrt{\mathrm{y} / \mathrm{R}})(1 / 2)(\mathrm{y} / \mathrm{R})^{-1 / 2}(1 / \mathrm{R})-\mathrm{f}_{X}(-\sqrt{\mathrm{y} / \mathrm{R}})(-1 / 2)(\mathrm{y} / \mathrm{R})^{-1 / 2}(1 / \mathrm{R}) \\
&=\frac{1}{2 \sqrt{\mathrm{yR}}}\left(f_{X}(\sqrt{y / R})+f_{X}(-\sqrt{y / R})\right)=\frac{1}{2 \sqrt{\mathrm{yR}}} 2 \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{y}{\mathrm{R}} \frac{1}{2 \sigma^{2}}\right\} \\
&=\frac{1}{\sqrt{2 \pi \sigma^{2} \mathbf{y} \mathbf{R}}} \exp \left\{-\frac{\mathbf{y}}{2 \sigma^{2} \mathbf{R}}\right\}
\end{aligned}
$$

and for $\mathbf{y}<\mathbf{0}, \mathbf{f}_{\mathbf{P}}(\mathbf{y})=\mathbf{0}$
4. 3.57 a, p. 180 (Assume X is a continuous random variable. Express your answers in terms of the cdf and/or pdf of X.)

(a) cdf: for $\mathbf{y}<-\mathbf{a}, \mathbf{F}_{\mathbf{Y}}(\mathbf{y})=\mathrm{P}(\mathrm{Y} \leq \mathrm{y})=\mathbf{0}$,

$$
\text { for }-\mathbf{a} \leq \mathbf{y}<\mathbf{a}, \mathbf{F}_{\mathbf{Y}}(\mathbf{y})=\mathrm{P}(\mathrm{Y} \leq \mathrm{y})=\mathrm{P}(\mathrm{~g}(\mathrm{X}) \leq \mathrm{y})=\mathrm{P}(\mathrm{X} \leq \mathrm{y})=\mathbf{F}_{\mathbf{X}}(\mathbf{y})
$$

for $\mathbf{y} \geq \mathbf{a}, \mathbf{F}_{\mathbf{Y}}(\mathbf{y})=\mathrm{P}(\mathrm{Y} \leq \mathrm{y})=\mathbf{1}$
pdf: for $\mathbf{y}<-\mathbf{a}$ or $\mathbf{y}>\mathbf{a}, \mathbf{f}_{\mathbf{Y}}(\mathbf{y})=\mathbf{0}$

$$
\text { for } \begin{aligned}
-\mathbf{a} \leq \mathbf{y} & \leq \mathbf{a}, \mathbf{f}_{\mathbf{Y}}(\mathbf{y})=\frac{\mathrm{d}}{\mathrm{dy}} \mathrm{~F}_{Y}(\mathrm{y})=\mathbf{P}(\mathbf{X} \leq-\mathbf{a}) \delta(\mathbf{y}+\mathbf{a})+\mathbf{f}_{\mathbf{X}}(\mathbf{y})+\mathbf{P}(\mathbf{X} \geq \mathbf{a}) \delta(\mathbf{y}-\mathbf{a}) \\
& =\mathbf{F}_{\mathbf{X}}(-\mathbf{a}) \delta(\mathbf{y}+\mathbf{a})+\mathbf{f}_{\mathbf{X}}(\mathbf{y})+\left(\mathbf{1}-\mathbf{F}_{\mathbf{X}}(\mathbf{a})+\mathbf{P}(\mathbf{X}=\mathbf{a})\right) \delta(\mathbf{y}-\mathbf{a})
\end{aligned}
$$

(c) cdf: for $\mathbf{y}<\mathbf{- a}, \mathbf{F}_{\mathbf{Y}}(\mathbf{y})=\mathbf{0}$

$$
\text { for }-\mathbf{a} \leq \mathbf{y}<\mathbf{a}, \mathbf{F}_{Y}(y)=F_{X}(y)=\int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(z-m)^{2}}{2 \sigma^{2}}\right\} d z
$$

for $\mathbf{y} \geq \mathbf{a}, \mathbf{F}_{\mathbf{Y}}(\mathbf{y})=\mathbf{1}$
pdf: for $\mathbf{y}<-\mathbf{a}$ or $\mathbf{y}>\mathbf{a}, \mathbf{f}_{\mathbf{Y}}(\mathbf{y})=\mathbf{0}$

$$
\text { for } \begin{aligned}
-a \leq y \leq a, & f_{Y}(y)=\left(\int_{-\infty}^{-a} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(z-m)^{2}}{2 \sigma^{2}}\right\} d z\right) \delta(y+a) \\
& +\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(y-m)^{2}}{2 \sigma^{2}}\right\}+\left(\int_{a}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(z-m)^{2}}{2 \sigma^{2}}\right\} d z\right) \delta(y-a)
\end{aligned}
$$

5. 3.65 , p. 181

This problem is about a discrete random variable with outcomes $\{1,2, \ldots, \mathrm{n}\}$ and pmf

$$
\mathrm{p}_{\mathrm{X}}(\mathrm{i})= \begin{cases}\frac{1}{\mathrm{n}}, & \mathrm{i} \text { in }\{1,2, \ldots, \mathrm{n}\} \\ 0, & \text { otherwise }\end{cases}
$$

The mean

$$
\mathrm{E}[\mathrm{X}]=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i} \mathrm{p}_{X}(\mathrm{i})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i} \frac{1}{\mathrm{n}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i}=\frac{1}{\mathrm{n}} \frac{\mathrm{n}(\mathrm{n}+1)}{2}=\frac{\mathrm{n}+1}{2}
$$

Note that an easy way to derive the fact that $\sum_{i=1}^{n} i=(n+1) / 2$ is that

$$
2 \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i}=(1+2+\ldots+\mathrm{n})+(\mathrm{n}+\mathrm{n}-1+\ldots+1)=(\mathrm{n}+1)+(\mathrm{n}+1)+\ldots+(\mathrm{n}+1)=\mathrm{n}(\mathrm{n}+1)
$$

To compute the variance we use: $\quad \operatorname{var}(\mathrm{X})=\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2}$
So we need to find

$$
\mathbf{E}\left[\mathbf{X}^{2}\right]=\sum_{i=1}^{n} \mathrm{i}^{2} \mathrm{p}_{X}(\mathrm{i})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i}^{2} \frac{1}{\mathrm{n}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i}^{2}=\frac{1}{\mathrm{n}} \frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}=\frac{(\mathbf{n + 1})(\mathbf{2 n + 1})}{\mathbf{6}}
$$

Then

$$
\operatorname{var}(X)=\frac{(n+1)(2 n+1)}{6}-\left(\frac{n+1}{2}\right)^{2}=\frac{\mathbf{n}^{2}-\mathbf{1}}{\mathbf{1 2}}
$$

6. 3.75 (a), p. 182

The net reward is $\mathrm{a} \mathrm{X}^{2}+\mathrm{bX}-\mathrm{nd}$, where X is a binomial random variable with pmf

$$
\mathrm{p}_{\mathrm{X}}(\mathrm{x})=\left\{\begin{array}{l}
\binom{\mathrm{n}}{\mathrm{x}} 2^{-\mathrm{n}}, \mathrm{x}=0,1, \ldots, \mathrm{n} \\
0, \text { else }
\end{array}\right.
$$

The expected net reward is

$$
E\left[a X^{2}+b X-n d\right]=a E\left[X^{2}\right]+b E[X]-n d
$$

From Table 3.1, $E[X]=n / 2$ and $\operatorname{var}(X)=n / 4$.
Therefore, $E\left[X^{2}\right]=\operatorname{var}(X)+(E[X])^{2}=n^{2} / 4+n^{2} / 4=n^{2} / 2$. Finally,

$$
E\left[a X^{2}+b X-n d\right]=a \frac{n^{2}}{2}+b \frac{n}{2}-n d
$$

7. 3.79 , p. 182
X is a discrete random variable with $p_{m f} p_{X}(x)=\left\{\begin{array}{l}\frac{1}{n}, x=1, \ldots, n \\ 0, \text { else }\end{array}\right.$

$$
\begin{aligned}
\mathbf{E}[\mathbf{Y}]= & \mathrm{E}[\mathrm{~K}+\mathrm{LX}]=\mathrm{K}+\mathrm{L} \mathrm{E}[\mathrm{X}]=\mathbf{K}+\mathbf{L} \frac{\mathbf{n + 1}}{\mathbf{2}} \text { from Problem } 3 \\
\operatorname{var}(\mathbf{Y}) & =\mathrm{L}^{2} \operatorname{var}(\mathrm{X}) \text { from Problem } 1 \\
& =\mathbf{L}^{\mathbf{2}} \frac{\mathbf{n}^{\mathbf{2}} \mathbf{- 1}}{\mathbf{1 2}} \text { from Problem 3}
\end{aligned}
$$

8. The "game show problem" is due with the next assignment.
