Things to practice: working with conditional pmf's, pdf's and cdf's, and the Big Four.

1. 4.30 , p. 259
2. 4.32, case (iii), p. 259
3. 4.35, p. 260 (Hint: First, find $\mathrm{F}_{\mathrm{T}}(\mathrm{t})$ using the law of total probability. A big part of this problem is figuring out exactly what the problem statement provides.)
4. A random variable X is exponentially distributed with expected value 10 . Let Y be a random variable whose conditional pdf given $\mathrm{X}=\mathrm{x}$ is

$$
f_{Y \mid X}(y \mid x)=\left\{\begin{array}{l}
\frac{1}{10} e^{(x-y) / 10}, y \geq x \\
0, \text { else }
\end{array}\right.
$$

Find the conditional pdf of X given $Y=y$.
5. Joe buys his gasoline at the local cut-rate gas station. The station sells two grades of gas, A and B, but the station owner won't tell which you get. Joe is concerned because his car mileage varies uniformly between 20 and 32 miles per gallon with brand A and between 16 and 26 miles per gallon with brand B. Suppose Joe knows the probabilities of the gas station having brands A and B are . 3 and .7, respectively. Let X be a random variable representing Joe's gas mileage.
(a) Find the cumulative distribution function of X .
(b) Joe has found that his gas mileage is at least 24 . Given this, determine the probability that he is using brand B .
6. A gambler brings X dollars to a casino where X is a random variable with density

$$
\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\left\{\begin{array}{l}
\frac{\mathrm{x}}{80,000}, 0 \leq \mathrm{x} \leq 400 \\
0, \text { otherwise }
\end{array}\right.
$$

After a night of gambling the gambler leaves the casino with Y dollars, where Y is uniformly distributed between 0 and X .
(a) Given the gambler leaves the casino with less than $\$ 200$ dollars, find the probability that he brought less than $\$ 200$.
(b) Find the probability that his loss was less than $\$ 100$.
(c) Find the probability that his loss was exactly $\$ 75$.
(d) Find the density of Y.
7. Suppose X and Y are jointly continuous, independent random variables. Show that

$$
P(Y \leq X)=\int_{-\infty}^{\infty} F_{Y}(y) f_{X}(y) d y
$$

