1. 4.30 , p. 259
*** The pmf of Y given $\mathrm{X}=-1$ is $\mathbf{p}_{\mathbf{Y} \mid \mathbf{X}}(\mathbf{y} \mid-\mathbf{1})=\frac{\mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})}{\mathrm{p}_{\mathrm{X}}(-1)}$ as given in the following table

$\mathrm{Y}=\mathbf{- 1}$		$\mathbf{0}$	$\mathbf{1}$
i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$
ii	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
in	$\mathbf{1}$		
iii	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

2. 4.32, case (iii), p. 259
*** $\quad f_{X Y}(x, y)=2,0 \leq x \leq 1,0 \leq y \leq 1-x . f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y=\int_{0}^{1-x} 2 d y=2-2 x$
$f_{Y \mid X}(\mathbf{y} \mid \mathbf{x})=\frac{\mathbf{f}_{X Y}(x, y)}{f_{X}(x)}=\left\{\begin{array}{l}\frac{2}{2-2 x}=\frac{1}{1-x}, \quad 0 \leq x \leq 1,0 \leq y \leq 1-x \\ 0, \text { else }\end{array}\right.$
3. 4.35 , p. 260

The problem statement gives us the conditional pdf of T given that the clerk is i . This is a kind of nonumerical conditioning. Specifically, it tells us that

$$
\mathrm{f}_{\mathrm{T}}(\mathrm{t} \mid \mathrm{i})=\alpha_{\mathrm{i}} \mathrm{e}^{-\alpha_{\mathrm{i}} \mathrm{t}}, \mathrm{t} \geq 0,
$$

The conditional cdf is $\mathrm{F}_{\mathrm{T}}(\mathrm{t} \mid \mathrm{i})=1-\mathrm{e}^{-\alpha_{\mathrm{i}} \mathrm{t}}$
(a) To find the pdf of T we first find the cdf and then differentiate. Using the law of total probability

$$
\mathrm{F}_{\mathrm{T}}(\mathrm{t})=\operatorname{Pr}(\mathrm{T} \leq \mathrm{t})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \operatorname{Pr}(\mathrm{~T} \leq \mathrm{t} \mid \mathrm{i})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \mathrm{~F}_{\mathrm{T}}(\mathrm{t} \mid \mathrm{i})
$$

Taking the derivative gives

$$
\begin{aligned}
\mathbf{f}_{\mathbf{T}}(\mathbf{t}) & =\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~F}_{\mathrm{T}}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \mathrm{~F}_{\mathrm{T}}(\mathrm{t} \mid \mathrm{i})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{~F}_{\mathrm{T}}(\mathrm{t} \mid \mathrm{i})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \mathrm{f}_{\mathrm{T}}(\mathrm{t} \mid \mathrm{i}) \\
& =\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{p}_{\mathbf{i}} \alpha_{\mathbf{i}} \mathbf{e}^{-\alpha_{i} \mathbf{t}}, \quad \mathbf{t} \geq \mathbf{0}
\end{aligned}
$$

Notice that the above is a kind of law of total probability for densities.
(b) $\quad \mathbf{E}[\mathbf{T}]=\int_{-\infty}^{\infty} \mathrm{t} \mathrm{f}_{\mathrm{T}}(\mathrm{t}) \mathrm{dt}=\int_{0}^{\infty} \mathrm{t} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \alpha_{\mathrm{i}} \mathrm{e}^{-\alpha_{\mathrm{i}} \mathrm{t}} \mathrm{dt}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \int_{0}^{\infty} \mathrm{t} \alpha_{\mathrm{i}} \mathrm{e}^{-\alpha_{\mathrm{i}} \mathrm{t}} \mathrm{dt}=\sum_{\mathrm{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{p}_{\mathrm{i}} \frac{\mathbf{1}}{\alpha_{\mathbf{i}}}$

$$
\begin{aligned}
& \mathrm{E}\left[\mathrm{~T}^{2}\right]=\int_{-\infty}^{\infty} \mathrm{t}^{2} \mathrm{f}_{\mathrm{T}}(\mathrm{t}) \mathrm{dt}=\int_{0}^{\infty} \mathrm{t}^{2} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \alpha_{\mathrm{i}} \mathrm{e}^{-\alpha_{i} \mathrm{t}} \mathrm{dt}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \int_{0}^{\infty} \mathrm{t}^{2} \alpha_{\mathrm{i}} \mathrm{e}^{-\alpha_{i} \mathrm{t}} \mathrm{dt}=\sum_{\mathrm{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{p}_{\mathrm{i}} \frac{\mathbf{2}}{\alpha_{i}^{2}} \\
& \operatorname{var}(\mathbf{T})=\mathrm{E}\left[\mathrm{~T}^{2}\right]-(\mathrm{E}[\mathrm{~T}])^{2}=\sum_{i=1}^{\mathbf{n}} \mathbf{p}_{\mathbf{i}} \frac{\mathbf{2}}{\alpha_{i}^{2}}-\left(\sum_{\mathrm{i}=1}^{\mathbf{n}} \mathbf{p}_{\mathrm{i}} \frac{\mathbf{1}}{\alpha_{i}}\right)^{\mathbf{2}}
\end{aligned}
$$

4. A random variable X is exponentially distributed with expected value 10. Let Y be a random variable whose conditional pdf given $X=x$ is

$$
f_{Y \mid X}(y \mid x)=\left\{\begin{array}{l}
\frac{1}{10} e^{(x-y) / 10}, \quad y \geq x \\
0 \quad, \text { else }
\end{array}\right.
$$

Find the conditional pdf of X given $Y=y$.
By Bayes rule for conditional densities: $f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}$
Since X is exponentially distributed with expected value $10: f_{X}(x)=\frac{1}{10} e^{-x / 10}, x \geq 0$.
To find $f_{Y}(y)$ we use $f_{Y}(y)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y \mid X}(y \mid x) d x$

$$
\begin{aligned}
& \quad f_{X}(x) f_{Y \mid X}(y \mid x)=\frac{1}{10} e^{-x / 10} \frac{1}{10} e^{(x-y) / 10}=\frac{1}{100} e^{-y / 10}, 0 \leq x \leq y \\
& \text { So } \ldots \quad f_{Y}(y)=\int_{0}^{y} \frac{1}{100} e^{-y / 10} d x=\frac{1}{100} y e^{-y / 10}
\end{aligned}
$$

Substituting into Bayes rule gives:

$$
\mathbf{f}_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y})=\frac{\frac{1}{100} \mathrm{e}^{-\mathrm{y} / 10}}{\frac{1}{100} \mathrm{y} \mathrm{e}^{-\mathrm{y} / 10}}=\frac{\mathbf{1}}{\mathbf{y}}, \quad \mathbf{0} \leq \mathbf{x} \leq \mathbf{y}
$$

5. Joe buys his gasoline at the local cut-rate gas station. The station sells two grades of gas, A and B, but the station owner won't tell which you get. Joe is concerned because his car mileage varies uniformly between 20 and 32 miles per gallon with brand A and between 16 and 26 miles per gallon with brand B. Suppose Joe knows the probabilities of the gas station having brands A and B are . 3 and .7, respectively. Let X be a random variable representing Joe's gas mileage.
(a) Find the cumulative distribution function of X.

From the problem statement, we deduce $\operatorname{Pr}($ brand A gas $)=0.3, \operatorname{Pr}($ brand B gas $)=0.7$; and

$$
\mathrm{f}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{A})=\left\{\begin{array}{l}
\frac{1}{12,} 20 \leq \mathrm{x} \leq 32 \\
0, \text { else }
\end{array} \quad \mathrm{f}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{B})=\left\{\begin{array}{l}
\frac{1}{10}, 16 \leq \mathrm{x} \leq 26 \\
0, \text { else }
\end{array}\right.\right.
$$

The cdf is

$$
\begin{aligned}
& \mathbf{F}_{\mathbf{X}}(\mathbf{x})=\operatorname{Pr}(\mathrm{X} \leq \mathrm{x})=\operatorname{Pr}(\mathrm{X} \leq \mathrm{x} \mid \mathrm{A}) \operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{X} \leq \mathrm{x} \mid \mathrm{B}) \operatorname{Pr}(\mathrm{B}) \\
& =\int_{-\infty}^{x} f_{X}(x \mid A) d x \times 0.3+\int_{-\infty}^{x} f_{X}(x \mid B) d x \times 0.7 \\
& =\left\{\begin{array}{l}
0, \quad \mathrm{x}<16 \\
0.7 \int_{16}^{\mathrm{x}} \frac{1}{10} \mathrm{dx}, \quad 16 \leq \mathrm{x}<20 \\
0.3 \int_{20}^{\mathrm{x}} \frac{1}{12} \mathrm{dx}+0.7 \int_{16}^{\mathrm{x}} \frac{1}{10} \mathrm{dx}, 20 \leq \mathrm{x}<26 \\
0.7+0.3 \int_{-20}^{\mathrm{x}} \frac{1}{12} \mathrm{dx}, 26 \leq \mathrm{x}<32 \\
1, \\
\mathrm{x} \geq 32
\end{array}=\left\{\begin{array}{l}
\mathbf{0}, \mathbf{x}<\mathbf{1 6} \\
\mathbf{0 . 7} \frac{\mathbf{x - 1 6}}{\mathbf{1 0}, \quad \mathbf{1 6} \leq \mathbf{x}<\mathbf{2 0}} \\
\mathbf{0 . 3} \frac{\mathbf{x - 2 0}}{\mathbf{1 2}}+\mathbf{0 . 7} \frac{\mathbf{x - 1 6}}{\mathbf{1 0}}, \mathbf{2 0} \leq \mathbf{x}<\mathbf{2 6} \\
\mathbf{0 . 7}+\mathbf{0 . 3} \frac{\mathbf{x - 2 0}}{\mathbf{1 2}}, \quad \mathbf{2 6} \leq \mathbf{x}<\mathbf{3 2} \\
\mathbf{1}, \quad \mathbf{x} \geq \mathbf{3 2}
\end{array}\right.\right.
\end{aligned}
$$

(b) Joe has found that his gas mileage is at least 24. Given this, determine the probability that he is using brand B.

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{B} \mid \mathbf{X} \geq \mathbf{2 4}) & =\frac{\operatorname{Pr}(X \geq 24 \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(X \geq 24)}=\frac{\int_{24}^{\infty} f_{X}(x \mid B) d x \times 0.7}{1-F X(24)}=\frac{\int_{24}^{26} \frac{1}{10} d x \times 0.7}{1-(0.3 \times 4 / 12+0.7 \times 8 / 10)} \\
& =\frac{\frac{1}{5} \times 0.7}{\frac{17}{50}}=\frac{\mathbf{7}}{\mathbf{1 7}}
\end{aligned}
$$

6. A gambler brings X dollars to a casino where X is a random variable with density

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{x}{80,000}, 0 \leq x \leq 400 \\
0, \text { otherwise }
\end{array}\right.
$$

After a night of gambling the gambler leaves the casino with Y dollars, where Y is uniformly distributed between 0 and X.
(a) Given the gambler leaves the casino with less than $\$ 200$ dollars, find the probability that he brought less than \$200.

We deduce from the problem statement, that

$$
\mathrm{f}_{\mathrm{Y} \mid \mathrm{X}(\mathrm{y} \mid \mathrm{x})}=\left\{\begin{array}{l}
\frac{1}{\mathrm{x}}, 0 \leq \mathrm{y} \leq \mathrm{x} \\
0,
\end{array}\right.
$$

and from this, we deduce that

$$
f_{X Y}(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)=\left\{\begin{array}{l}
\frac{1}{80,000}, 0 \leq x \leq 400,0 \leq y \leq x \\
0, \text { else }
\end{array}\right.
$$

Now, we must find

$$
\operatorname{Pr}(\mathrm{X} \leq 200 \mid \mathrm{Y} \leq 200)=\frac{\operatorname{Pr}(\mathrm{X} \leq 200, \mathrm{Y} \leq 200)}{\operatorname{Pr}(\mathrm{Y} \leq 200)}
$$

The numerator:

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{X} \leq 200, \mathrm{Y} \leq 200) & =\int_{-\infty}^{200} \int_{-\infty}^{200} f_{X Y}(\mathrm{x}, \mathrm{y}) \mathrm{dy} \mathrm{dx}=\int_{0}^{200} \int_{0}^{\mathrm{x}} \frac{1}{80,000} \mathrm{dy} \mathrm{dx}=\int_{0}^{200} \frac{\mathrm{x}}{80,000} \mathrm{dx} \\
& =\left.\frac{1}{80,000} \frac{1}{2} \mathrm{x}^{2}\right|_{0} ^{200}=\frac{1}{4}
\end{aligned}
$$

The denominator:

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{Y} \leq 200) & =\int_{-\infty}^{200} f_{Y}(\mathrm{y}) \mathrm{dy}=\int_{-\infty}^{200} \int_{-\infty}^{\infty} f_{X Y}(x, y) d x d x=\int_{0}^{200} \int_{y}^{400} \frac{1}{80,000} d x d y \\
& =\int_{0}^{200} \frac{400-y}{80,000} d y=1-\left.\frac{1}{80,000} \frac{1}{2} y^{2}\right|_{0} ^{200}=\frac{3}{4}
\end{aligned}
$$

Substituting for the numerator and denominator gives

$$
\operatorname{Pr}(\mathrm{X} \leq 200 \mid \mathrm{Y} \leq 200)=\frac{1}{3}
$$

(b) Find the probability that his loss was less than $\$ 100$.

His loss is $\mathrm{X}-\mathrm{Y}$, so we need to find

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{X - Y} & <\mathbf{1 0 0})=\int_{-\infty}^{\infty} \int_{x-100}^{x} f_{X Y}(x, y) d y d x=\int_{0}^{400} \int_{\max (0, x-100)}^{x} \frac{1}{80,000} d y d x \\
& =\int_{0}^{100} \int_{0}^{x} \frac{1}{80,000} d y d x+\int_{100}^{400} \int_{x-100}^{x} \frac{1}{80,000} d y d x \\
& =\int_{0}^{100} \frac{x}{80,000} d y+\int_{100}^{400} \frac{1}{800} d x=\left.\frac{1}{80,000} \frac{1}{2} x^{2}\right|_{0} ^{100}+\frac{300}{800}=\frac{1}{16}+\frac{3}{8}=\frac{\mathbf{7}}{\mathbf{1 6}}
\end{aligned}
$$

(c) Find the probability that his loss was exactly $\$ 75$.

$$
\operatorname{Pr}(\mathbf{X}-\mathbf{Y}=\mathbf{7 5})=\int_{-\infty}^{\infty} \int_{x-75}^{x-75} f_{X Y}(x, y) d y d x=0 \quad \text { because the area of integration is zero }
$$

(d) Find the density of Y.

$$
\mathbf{f}_{\mathbf{Y}}(\mathbf{y})=\int_{-\infty}^{\infty} \mathrm{f}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y}) \mathrm{dx}=\left\{\begin{array}{l}
400 \\
\int_{\mathrm{y}}^{80,000} \mathrm{dx}, 0 \leq \mathrm{y} \leq 400 \\
0, \text { else }
\end{array}=\left\{\begin{array}{l}
\frac{\mathbf{4 0 0}-\mathbf{y}}{\mathbf{8 0 , 0 0 0}}, \mathbf{0} \leq \mathbf{y} \leq \mathbf{4 0 0} \\
\mathbf{0 ,} \text { els e }
\end{array}\right.\right.
$$

7. Suppose X and Y are jointly continuous, independent random variables. Show that

$$
\begin{aligned}
P(Y \leq X) & =\int_{-\infty}^{\infty} F_{Y}(y) f_{X}(y) d y \\
\operatorname{Pr}(\mathrm{Y} \leq \mathrm{X}) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\mathrm{x}} \mathrm{f}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y}) \mathrm{dy} \mathrm{dx}=\int_{-\infty}^{\infty} \int_{-\infty}^{\mathrm{x}} \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{f}_{\mathrm{Y}}(\mathrm{y}) \mathrm{dydx} \text { since } \mathrm{X} \text { and } \mathrm{Y} \text { are independent } \\
& =\int_{-\infty}^{\infty} \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \int_{-\infty}^{\mathrm{x}} \mathrm{f}_{\mathrm{Y}}(\mathrm{y}) \mathrm{dy} \mathrm{dx}=\int_{-\infty}^{\infty} \mathrm{f}_{X}(\mathrm{x}) \mathrm{F}_{Y}(\mathrm{x}) \mathrm{dx}=\int_{-\infty}^{\infty} \mathrm{f}_{X}(\mathrm{y}) \mathrm{F}_{\mathrm{Y}}(\mathrm{y}) \mathrm{dy}
\end{aligned}
$$

