Things to practice: conditional expectation, estimation rules, correlation and covariance, uncorrelated vs. independence, the distribution of multiple random variables (big 4 and chain rule), functions of multiple random variables, jointly Gaussian random variables

1. Joe buys his gasoline at the local cut-rate gas station. The station sells two grades of gas, A and B, but the station owner won't tell which you get. Joe is concerned because his car mileage varies uniformly between 20 and 32 miles per gallon with brand A and between 16 and 26 miles per gallon with brand B. Suppose Joe knows the probabilities of the gas station having brands A and B are . 3 and .7, respectively. Let X be a random variable representing Joe's gas mileage. (This is same descriptions as Prob. 5 of previous homework.)
Find the expected value of X WITHOUT integrating x times the density of X .
2. A gambler brings X dollars to a casino where X is a random variable with density

$$
\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\left\{\begin{array}{l}
\frac{\mathrm{x}}{80,000}, 0 \leq \mathrm{x} \leq 400 \\
0, \text { otherwise }
\end{array}\right.
$$

After a night of gambling the gambler leaves the casino with Y dollars, where Y is uniformly distributed between 0 and X . (This is same descriptions as Prob. 6 of previous homework.)
(a) Find the expected value of Y WITHOUT integrating x times the density of Y.
(a) Given the gambler leaves the casino with $\$ 200$ dollars, find the expected number of dollars that he brought.
3. 4.39 , p. 260
4. 4.41 , p. 261 (don't use the chain rule; you are, in effect, rederiving it for 3 random variables.)
5. Let $\mathrm{W}=\mathrm{X}+3 \mathrm{Y}-\mathrm{Z}$, where X, Y and Z be uncorrelated Gaussian random variables with means $\mathrm{m}_{\mathrm{X}}=1, \mathrm{~m}_{\mathrm{Y}}=2$ and $\mathrm{m}_{\mathrm{Z}}=3$, and variances $\sigma_{\mathrm{X}}^{2}=1, \sigma_{\mathrm{Y}}^{2}=2, \sigma_{\mathrm{Z}}^{2}=3$.
Find $\mathrm{P}(\mathrm{W} \geq 1)$. Hint: W is a linear combination of Gaussian random variables.
6. 4.51 , p. 262
7. 4.61 , p. 263
8. 4.67 , p. 263
9. Let X, Y be continuous random variables with joint density

$$
f_{X Y}(x, y)=\left\{\begin{array}{l}
x+y, 0 \leq x \leq 1,0 \leq y \leq 1 \\
0, \text { else }
\end{array}\right)
$$

(a) Find the best linear estimate for Y given $\mathrm{X}=\mathrm{x}$.
(b) Find the best overall estimate for Y given $\mathrm{X}=\mathrm{x}$.

