1. Joe buys his gasoline at the local cut-rate gas station. The station sells two grades of gas, A and B, but the station owner won't tell which you get. Joe is concerned because his car mileage varies uniformly between 20 and 32 miles per gallon with brand A and between 16 and 26 miles per gallon with brand B. Suppose Joe knows the probabilities of the gas station having brands A and B are . 3 and .7, respectively. Let X be a random variable representing Joe's gas mileage. (This is same descriptions as Prob. 5 of previous homework.)

Find the expected value of X WITHOUT integrating x times the density of X.
We use a version of the law of total expectation, namely,

$$
\mathrm{E}[\mathrm{X}]=\mathrm{E}[\mathrm{X} \mid \mathrm{A}] \mathrm{P}(\mathrm{~A})+\mathrm{E}[\mathrm{X} \mid \mathrm{B}] \mathrm{P}(\mathrm{~B})
$$

From the problem statement, we deduce $\operatorname{Pr}(A)=0.3, \operatorname{Pr}(B)=0.7$; and

$$
\mathrm{f}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{A})=\left\{\begin{array}{l}
\frac{1}{12}, 20 \leq \mathrm{x} \leq 32 \\
0, \text { else }
\end{array} \quad \mathrm{f}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{B})=\left\{\begin{array}{l}
\frac{1}{10}, 16 \leq \mathrm{x} \leq 26 \\
0, \text { else }
\end{array}\right.\right.
$$

Hence, $\mathrm{E}[\mathrm{X} \mid \mathrm{A}]=\int_{20}^{32} \frac{1}{12} \mathrm{dx}=26$ and $\mathrm{E}[\mathrm{X} \mid \mathrm{B}]=\int_{-16}^{26} \frac{1}{10} \mathrm{dx}=21$, and

$$
\mathbf{E}[\mathbf{X}]=26 \times .3+21 \times .7=\mathbf{2 2 . 5}
$$

2. A gambler brings X dollars to a casino where X is a random variable with density

$$
\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\left\{\begin{array}{l}
\frac{\mathrm{x}}{80,000}, 0 \leq \mathrm{x} \leq 400 \\
0, \text { otherwise }
\end{array}\right.
$$

After a night of gambling the gambler leaves the casino with Y dollars, where Y is uniformly distributed between 0 and X. (This is same descriptions as Prob. 6 of previous homework.)
(a) Find the expected value of Y WITHOUT integrating x times the density of Y.

We use a version of the law of total expectation, namely, $E[Y]=\int_{-\infty}^{\infty} E[Y \mid X=x] f_{X}(x) d x$
From the problem statement, we deduce $f_{Y \mid X}(y \mid x)=\left\{\begin{array}{l}\frac{1}{x}, 0 \leq y \leq x \\ 0,\end{array}\right.$
Therefore, $E[Y \mid X=x]=\int_{-\infty}^{\infty} y f_{Y \mid X(y \mid x)} d y=\int_{0}^{x} y \frac{1}{x} d y=\left.\frac{1}{x} \frac{y^{2}}{2}\right|_{0} ^{x}=\frac{x}{2}$
$\Rightarrow \quad \mathbf{E}[\mathbf{Y}]=\int_{0}^{400} \frac{\mathrm{x}}{2} \frac{\mathrm{x}}{80,000} \mathrm{dx}=\left.\frac{1}{160,000} \frac{\mathrm{x}^{3}}{3}\right|_{0} ^{400}=\frac{400}{3}=\mathbf{1 3 3 . 3}$
(a) Given the gambler leaves the casino with $\$ 200$ dollars, find the expected number of dollars that he brought.
We need to find $E[X \mid Y=200]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid 200) d x$
To find $f_{X \mid Y}(x \mid y)$ we use the following version of Bayes rule: $f_{X \mid Y}(x \mid 200)=\frac{f_{Y \mid X}(200 \mid x) f_{X}(x)}{f_{Y}(200)}$
where $\quad f_{Y}(200)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y \mid X}(200 \mid x) d x=\int_{200}^{400} \frac{x}{80,000} \frac{1}{x} d x=\frac{200}{80,000}=\frac{1}{400}$ (note that $\mathrm{f}_{\mathrm{Y} \mid \mathrm{X}}(\mathrm{y} \mid \mathrm{x})=\frac{\mathrm{x}}{80,000}$ only if $0 \leq \mathrm{y} \leq \mathrm{x}$)
So $\quad f_{X \mid Y}(x \mid 200)=\frac{\frac{1}{x} \frac{x}{80,000}}{\frac{1}{400}}=\frac{1}{200} \quad$ if $200 \leq x \leq 400$
And $\quad \mathbf{E}[\mathbf{X} \mid \mathbf{Y}=\mathbf{2 0 0}]=\int_{200}^{400} \mathrm{x} \frac{1}{200} \mathrm{dx}=\left.\frac{1}{200} \frac{\mathrm{x}^{2}}{2}\right|_{200} ^{400}=400-100=\mathbf{3 0 0}$
3. 4.39 , p. 260

$$
\mathrm{f}_{\mathrm{X}, \mathrm{Y}, \mathrm{Z}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{k}(\mathrm{x}+\mathrm{y}+\mathrm{z}), \quad 0 \leq \mathrm{x} \leq 1,0 \leq \mathrm{y} \leq 1,0 \leq \mathrm{z} \leq 1
$$

(a) We choose k so that $\mathrm{f}_{\mathrm{X}, \mathrm{Y}, \mathrm{Z}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ integrates to one.

$$
\begin{aligned}
1 & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f_{X, Y, Z}(x, y, z) d z d y d x=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} k(x+y+z) d z d y d x \\
& =\int_{0}^{1} \int_{0}^{1} k\left(x+y+\frac{1}{2}\right) d y d x=\int_{0}^{1} k\left(x+\frac{1}{2}+\frac{1}{2}\right) d x=k\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=\frac{3}{2} k \Rightarrow \mathbf{k}=\frac{\mathbf{2}}{\mathbf{3}}
\end{aligned}
$$

(b) $f_{X, Y}(x, y)=\int_{0}^{1} f_{X, Y}, Z(x, y, z) d z=\frac{2}{3}\left(x+y+\frac{1}{2}\right), 0 \leq x \leq 1,0 \leq y \leq 1$

$$
\mathbf{f}_{Z \mid X, Y}(\mathbf{z} \mid \mathbf{x}, \mathbf{y})=\frac{f_{X, Y, Z}(x, y, z)}{f_{X, Y}(x, y)}=\frac{\frac{2}{3}(x+y+z)}{\frac{2}{3}\left(x+y+\frac{1}{2}\right)}=\frac{(x+y+z)}{\left(x+y+\frac{1}{2}\right)}
$$

4. 4.41, p. 261 (don't use the chain rule; you are, in effect, rederiving it for 3 random variables.)

We need to show $\mathrm{f}_{\mathrm{X}, \mathrm{Y}, \mathrm{Z}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{f}_{\mathrm{Y} \mid \mathrm{X}}(\mathrm{y} \mid \mathrm{x}) \mathrm{f}_{\mathrm{Z} \mid \mathrm{X}, \mathrm{Y}}(\mathrm{z} \mid \mathrm{x}, \mathrm{y})$. Let us start with the right hand side and substitute the formulas for each of the conditional densities there. We have

$$
f_{X}(x) f_{Y \mid X}(y \mid x) f_{Z \mid X, Y}(z \mid x, y)=f_{X}(x) \frac{f_{X Y}(x, y)}{f_{X}(x)} \frac{f_{X Y Z}(x, y, z)}{f_{X Y}(x, y)}=f_{X Y Z}(x, y, z)
$$

Alternate derivation: We use the fact that $f_{U, V}(u, v)=f_{U}(u) f_{V \mid U}(v \mid u)$
With $\mathrm{U}=(\mathrm{X}, \mathrm{Y}), \mathrm{u}=(\mathrm{x}, \mathrm{y}), \mathrm{V}=\mathrm{Z}$ and $\mathrm{v}=\mathrm{z}$, the above fact implies

$$
\begin{aligned}
\mathrm{f}_{\mathrm{X}, \mathrm{Y}, \mathrm{Z}}(\mathrm{x}, \mathrm{y}, \mathrm{z}) & =\mathrm{f}_{\mathrm{U}, \mathrm{~V}}(\mathrm{u}, \mathrm{v})=\mathrm{f}_{\mathrm{U}}(\mathrm{u}) \mathrm{f}_{\mathrm{V} \mid \mathrm{U}}(\mathrm{v} \mid \mathrm{u})=\mathrm{f}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \mathrm{y}) \mathrm{f}_{\mathrm{Z} \mid \mathrm{X}, \mathrm{Y}}(\mathrm{z} \mid \mathrm{x}, \mathrm{y}) \\
& =\mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{f}_{\mathrm{Y} \mid \mathrm{X}}(\mathrm{y} \mid \mathrm{x}) \mathrm{f}_{\mathrm{Z} \mid \mathrm{X}, \mathrm{Y}}(\mathrm{z} \mid \mathrm{x}, \mathrm{y})
\end{aligned}
$$

where the last step follows by the above stated fact, with $U=X, u=x, V=Y, v=y$
5. Let $W=X+3 Y-Z$, where X, Y and Z be uncorrelated Gaussian random variables with means $m_{x}=1, m_{Y}=2$ and $m_{Z}=3$, and variances $\sigma_{X}^{2}=1, \sigma_{Y}^{2}=2, \sigma_{Z}^{2}=3$.
Find $P(W \geq 1)$. Hint: W is a linear combination of Gaussian random variables.
W is Gaussian, since it is the linear combination of Gaussian random variables. Therefore, to find
the density of W we need only find $\mathrm{E}[\mathrm{W}]$ and σ_{W}^{2}.

$$
\mathrm{E}[\mathrm{~W}]=\mathrm{E}[\mathrm{X}+3 \mathrm{Y}-\mathrm{Z}]=\mathrm{E}[\mathrm{X}]+3 \mathrm{E}[\mathrm{Y}]-\mathrm{E}[\mathrm{Z}]=1+3 \times 2-3=4
$$

Since X, Y and Z are uncorrelated, so are $\mathrm{X}, 3 \mathrm{Y}$ and -Z , so the variance of $\mathrm{W}=\mathrm{X}+3 \mathrm{Y}-\mathrm{Z}$ is the sum of the variances of $\mathrm{X}, 3 \mathrm{Y}$ and -Z :

$$
\sigma_{\mathrm{W}}^{2}=\operatorname{var}(\mathrm{X})+\operatorname{var}(3 \mathrm{Y})+\operatorname{var}(-\mathrm{Z})=\sigma_{\mathrm{X}}^{2}+9 \sigma_{\mathrm{Y}}^{2}+\sigma_{\mathrm{Z}}^{2}=1+9 \times 2+3=22
$$

Now,

$$
\begin{aligned}
\mathbf{P}(\mathbf{W} \geq \mathbf{1}) & =\int_{1}^{\infty} f_{\mathrm{W}}(\mathrm{w}) \mathrm{dw}=\int_{1}^{\infty} \frac{1}{\sqrt{2 \pi \sigma_{\mathrm{W}}^{2}}} \exp \left\{-\frac{(\mathrm{W}-\mathrm{E}[\mathrm{~W}])^{2}}{2 \sigma_{\mathrm{W}}^{2}}\right\} \mathrm{dw} \\
& =\int_{\frac{1-\mathrm{E}[\mathrm{~W}]}{\sigma_{\mathrm{W}}}} \frac{1}{\sqrt{2 \pi \sigma_{\mathrm{W}}^{2}}} \exp \left\{-\frac{\mathrm{u}^{2}}{2}\right\} \text { du } \sigma_{\mathrm{W}}, \quad \text { letting } \mathrm{u}=\frac{\mathrm{w}-\mathrm{E}[\mathrm{~W}]}{\sigma_{\mathrm{W}}} \\
& =\mathrm{Q}\left(\frac{1-\mathrm{E}[\mathrm{~W}]}{\sigma_{\mathrm{W}}}\right)=\mathrm{Q}\left(\frac{1-4}{\sqrt{22}}\right)=\mathrm{Q}(-.64)=1-\mathrm{Q}(.64) \cong 1-.26 \cong .74
\end{aligned}
$$

6. 4.51 , p. 262
$f_{X, Y}(x, y)=2 e^{-(x+y),} 0 \leq y \leq x$, and $Z=X+Y$. Note that X and Y are not independent. As shown in class and in Example 4.31, p. 221,

$$
\begin{aligned}
\mathbf{f}_{\mathbf{Z}}(\mathbf{z}) & =\int_{-\infty}^{\infty} f_{X Y}(x, z-x) d x, \quad \text { note: } f_{X Y}(x, z-x)=2 e^{-(x+z-x)}, 0 \leq z-x \leq x \\
& =2 e^{-z}, \quad z / 2 \leq x \leq z=\int_{z / 2}^{z} 2 e^{-z} d x=2 e^{-z} \frac{z}{2}=z e^{-z}, \quad z \geq 0
\end{aligned}
$$

7. 4.61 , p. 263

Since X and Y are independent X^{2} and Y are independent (functions of independent random variables are independent), so

$$
\mathrm{E}\left[\mathrm{X}^{2} \mathrm{Y}\right]=\mathrm{E}\left[\mathrm{X}^{2}\right] \mathrm{E}[\mathrm{Y}]
$$

Since X is Gaussian with $E[X]=0$ and $\sigma_{X}^{2}=1, E\left[X^{2}\right]=\sigma_{X}^{2}+(E[X])^{2}=1+0=1$
Since Y is uniform on $[-1,3], \mathrm{E}[\mathrm{Y}]=1$.

$$
\mathbf{E}\left[\mathbf{X}^{\mathbf{2}} \mathbf{Y}\right]=\mathrm{E}\left[\mathrm{X}^{2}\right] \mathrm{E}[\mathrm{Y}]=1 \times 1=\mathbf{1}
$$

8. 4.67 , p. 263

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{aX}+\mathrm{b} \text { and } \rho=\frac{\operatorname{cov}(\mathrm{X}, \mathrm{Y})}{\sigma_{X} \sigma_{Y}}, \\
& \begin{aligned}
\operatorname{cov}(\mathrm{X}, \mathrm{Y}) & =\mathrm{E}[\mathrm{XY}]-\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]=\mathrm{E}[\mathrm{X}(\mathrm{aX}+\mathrm{b}]-\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{aX}+\mathrm{b}] \\
& =\mathrm{a}\left[\mathrm{X}^{2}\right]+\mathrm{bE}[\mathrm{X}]-\mathrm{a}(\mathrm{E}[\mathrm{X}])^{2}-\mathrm{bE}[\mathrm{X}]=\mathrm{a}\left(\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2}\right)=\mathrm{a} \sigma_{\mathrm{X}}^{2}
\end{aligned}
\end{aligned}
$$

$$
\sigma_{\mathrm{Y}}^{2}=\operatorname{var}(\mathrm{aX}+\mathrm{b})=\mathrm{a}^{2} \sigma_{\mathrm{X}}^{2} \Rightarrow \rho=\frac{\operatorname{cov}(\mathrm{X}, \mathrm{Y})}{\sigma_{\mathrm{X}} \sigma_{\mathrm{Y}}}=\frac{\mathrm{a} \sigma_{\mathrm{X}}^{2}}{\sigma_{\mathrm{X}} \mathrm{a} \sigma_{\mathrm{X}}}=\mathbf{1}
$$

9. Let X, Y be continuous random variables with joint density

$$
f_{X Y}(x, y)=\left\{\begin{array}{l}
x+y, 0 \leq x \leq 1,0 \leq y \leq 1 \\
0, \text { else }
\end{array}\right.
$$

(a) Find the best linear estimate for Y given $X=x$.

The best linear estimate for Y given $\mathrm{X}=\mathrm{x}$, is

$$
\begin{aligned}
& \hat{y}=a x+b=\rho_{X Y} \frac{\sigma_{Y}}{\sigma_{X}}(X-E[X])+E[Y] \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d x=\int_{0}^{1}(x+y) d x=\left(\left.\frac{x^{2}}{2}\right|_{0} ^{1}+y\right)=\frac{1}{2}+y, 0<y<1 \\
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y=\int_{0}^{1}(x+y) d y=\left(\left.\frac{y^{2}}{2}\right|_{0} ^{1}+x\right)=\frac{1}{2}+x, 0<x<1 \\
& E[X]=E[Y]=\int_{0}^{1} y\left(\frac{1}{2}+y\right) d y=\frac{1}{4}+\frac{1}{3}=\frac{7}{12} \\
& E\left[X^{2}\right]=E\left[Y^{2}\right]=\int_{0}^{1} y^{2}\left(\frac{1}{2}+y\right) d y=\frac{1}{6}+\frac{1}{4}=\frac{5}{12} \\
& E[X Y]=\int_{0}^{1} \int_{0}^{1} x y(x+y) d x d y=\int_{0}^{1} y \frac{y^{2}}{3}+\frac{1}{2} d y=\frac{1}{6}+\frac{1}{6}=\frac{1}{3} \\
& \rho_{X Y}=\frac{E[X Y]-E[X] E[Y]}{\sqrt{E\left[X^{2}\right]-(E[X])^{2}} \sqrt{E[Y 2]-\left(E \left[Y[)^{2}\right.\right.}=\frac{1 / 3-49 / 144}{5 / 12-49 / 144}=-\frac{1}{11}} \\
& \text { So, } \hat{y}=-\frac{\mathbf{1}}{\mathbf{1 1}}\left(x-\frac{\mathbf{7}}{\mathbf{1 2}}\right)+\frac{\mathbf{7}}{\mathbf{1 2}}
\end{aligned}
$$

(b) Find the best overall estimate for Y given $X=x$.

The best overall estimate for Y given $X=x$ is $\quad \hat{y}=E[Y \mid X=x]=\int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d x$
Using Bayes rule: $\quad f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}=\frac{x+y}{1 / 2+x}=\frac{2(x+y)}{1+2 x}, 0<x<1,0<y<1$
Therefore, $\hat{\mathbf{y}}=\int_{-\infty}^{\infty} \mathrm{y} f_{Y \mid X}(y \mid x) d x=\int_{0}^{1} y \frac{2(x+y)}{1+2 x} d y=\frac{2 x}{1+2 x} \int_{0}^{1} y d y+\frac{2}{1+2 x} \int_{0}^{1} y^{2} d y$

$$
\begin{aligned}
& =\left.\frac{2 \mathrm{x}}{1+2} \frac{\mathrm{y}^{2}}{2}\right|_{0} ^{1}+\left.\frac{2}{1+2 \mathrm{x}} \frac{\mathrm{y}^{3}}{3}\right|_{0} ^{1} \\
& =\frac{\mathbf{2}}{\mathbf{1 + 2} \mathbf{x}}\left(\frac{\mathbf{x}}{\mathbf{2}}+\mathbf{\frac { 1 } { \mathbf { 3 } }}\right)
\end{aligned}
$$

The two estimation rule are plotted \Rightarrow (One is linear, one is not.)

