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Summary of Random Variable Concepts April 19, 2000

This is a list of important concepts we have covered, rather than a review that derives or explains them.

The first and primary viewpoint:

A random process is an indexed collection of random variables.

That is, a random process is  {X(t): t∈ I},  where  I  is an infinite collection of times (or time indices).
For each time t in I, there is a random variable denoted  X(t).  Sometimes we write  Xt  instead of  X(t).

The random process itself is denoted  {X(t): t∈ I},  or by one of the shorthands:  {X(t)}, X(t),  X  or
any of the previous with  Xt  replacing  X(t).

Discrete and Continuous Time Random Processes

Discrete-time random processes have  I = {0,1,2,...},  I = {1,2,3, ... }  or  I = {...,-2,-1,0,1,2,... }.

For discrete-time processes we often use the following notations  {X(n)},  {Xn}  or replace  n  by
some other letter such as  i,j,k,m  that suggests an integer.

Continuous-time random processes have  I = [a,b],  where  -∞≤a<b≤∞.

Probability Distribution of the Random Process  {X(t)}

To know the probability distribution of a random process is to know the joint distribution of every
finite collection of its random variables; i.e. to know the joint distribution of  X(t1), X(t2),...,X(tn)  for
every  n  and  t1,...,tn ∈  I.  For example, it suffices to know the joint cdf, pdf or cmf of  X(t1),
X(t2),...,X(tn).

Knowing the probability distribution of a random process, we can compute the probability of any event
involving the random process, or any conditional probability, or any expected value.

Partial Characterizations of the Probability Distribution of a Random Process  {X(t)}

The probability distribution of a random process is an awful lot to have to know or to specify.
Consequently, we often work with one or more of the following partial descriptions of its probability
distribution.

1.  First-order distribution:  This consists of the marginal distributions of every individual random
variable  X(t),  t ∈  I,  as specified, for example, by cdf, pdf or pmf of every individual random
variable.

2.  Second-order distribution:   This consists of the joint distribution of every pair of random variables
(X(t),X(s))  t,s ∈  I, as specified, for example by the joint cdf, pdf or pmf of every pair of random
variables.

3.  nth-order distribution:  This consists of the joint distribution of every collection of n random
variables  (X(t1),...,X(tn)),  t1,...,tn ∈  I, as specified, for example by specifying the joint cdf, pdf or
pmf of collection of n random variables.

4.  mean function:

mX(t)  =  E X(t)

5. power function:

PX(t)  =  E X2
 (t)

6. autocorrelation function:

RX(t1,t2)  =  correlation between  X(t1)  and  X(t2)  =  E X(t1) X(t2)
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7.  autocovariance function:

CX(t1,t2)   =  covariance of  X(t1)  and  X(t2)   =  E [(X(t1)-mX(t1))(X(t2)-mX(t2))]

=  RX(t1,t2) - mX(t1)mX(t2)   (we derived this formula in class)

Some Discrete-Time Examples

1. IID Random Process  (Independent and Identically Distributed):

Like the name suggests, the random variables are independent and identically distributed.  For IID
random processes the complete probability distribution is determined from the probability
distribution of just one random variable.

2. Bernoulli Random Process:

A binary IID random process.

3. Moving Average (MA) Random Process:

Yn = ∑
i=0

M-1
 bi Xi

where  {Xn}  is an IID process,  M ≥ 2 is an integer,  and  b0,...,bM-1  are parameters.

4. Autoregressive Random (AR) Process:

Yn = ∑
i=1

N
 ai Yn-i  +  XN

where  {Xn}  is an IID process,  Xn  is independent of  Yn-1,Yn-2,...,   N ≥ 1 is an integer,  and
a0,...,aN  are parameters.

5. Autoregressive Random Moving Average (ARMA) Process:

Yn = ∑
i=1

N
 ai Yn-i  +   ∑

i=0

M-1
 bi Xi

where  {Xn}  is an IID process,  Xn  is independent of  Yn-1,Yn-2,...,   N ≥ 1 is an integer,
a0,...,aN  are parameters,   M ≥ 2 is an integer,  and  b0,...,bM-1  are parameters.

6. Binomial Random Process:

Yn = ∑
i=1

n
 X i

where  {Xn}  is a Bernoulli process, with  Xn = 0 or 1.

7. Gaussian Random Process:

This means that every finite collection of the random variables is jointly Gaussian.

Some Continuous-Time Examples

1.  Sinusoidal random process:

X(t) = A cos(ωt + Θ)  where  A  and  Θ  are independent random variables, and  Θ is uniformly
distributed on  [0,2π).
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2. Poisson Counting Process:

Let  T1, T2, ... be an IID random process where each Tn is exponentially distributed with mean
1/a.    Tn  is the nth interarrival time.  Let  Sn = T1+T2+...+Tn . Sn is the nth arrival time.

Y(t) = n  if  Sn ≤ t  and  Sn+1 > t , i.e. if the nth event has occurred by time t but not the n+1'th.

3. Random Process with Finite Number of Sample Functions:

Sample functions:

X(t,1)  =  1,    X(t,2) = -2,    X(t,3) = sin πt,    X(t,4) = cos πt.

These have probabilities P(1), P(2), P(3), P(4)

4. Gaussian Random Process:

This means that every finite collection of the random variables is jointly Gaussian.

5. White Noise Ra\ndom Process:

This is a WSS random process with power spectral density that is constant with frequency.

The Second, i.e. Alternative, View of a Random Process

A random process is a randomly chosen sample function.  More specifically, a random process is
{X(t,s): t∈ I, s∈ S},  where  I  is a set of time-indices (as before) and  S  is the sample space of some
underlying random experiment with probability law  P.

For each t,  X(t,s)  is a random variable.  (Recall that model of a random variable as a function of an
underlying random experiment.  Note that the value of this model is that all random variables are
viewed as functions of the same underlying experiment.)

For each s∈ S,  X(t,s)  is a function of  t  called a sample function.

One may think of the random process as being generated in the following way:

At the beginning of time, the underlying experiment is performed (whose probability law is P)
resulting in an outcome s.  The random process produces the sample function  X(t,s)  (for this
particular s).

This is called the sample-function viewpoint.
In principle, one can derive the probability distribution of the random process (as needed in the first
viewpoint) by knowing the function  X(t,s)  and the probability law P of the underlying experiment.

Stationarity

A random process  {X(t): t∈ I}  is (strictly) stationary if the probability distribution of
X(t1+τ),X(t2+τ),...,X(tn+τ)  does not depend on  τ  for every choice of  n  and  t1,...,tn.

That is,  F
 

X(t1+τ),X(t2+τ),...,X(tn+τ)(x1,...,xn)  does not depend on  τ  and if the random process has
joint pdf's or pmf's, the same holds for them.
The basic idea is that for a stationary r.p. the probability distributions of random variables (and vectors)
do not change with time shifts.  The probability of something happening at time t  is the same as the
probability of it happening at any other time.

The following are some of the consequences of stationarity:

fX(t)(x) = fX(s)(x)  all t,s,x

fX(t)X(t+τ)(x1,x2) = fX(s)X(s+τ)(x1,x2)   all t, s, τ, x1,x2
µX(t) is the same for all  t

RX(t,t+τ)  does not depend on  t.
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Wide-sense Stationarity

A random process  {X(t): t∈ T}  is wide-sense stationary (WSS) if

mX(t)  and  RX(t,t+τ)  do not depend on  t.

Stationarity ⇒  wide-sense stationary.  The converse is false.

Wide-sense stationarity is a weak kind of stationarity that is easier to check and to work with, since it
only depends on the mean and autocorrelation functions.

Properties of the Autocorrelation Function of Wide-Sense Stationary (or Stationary) Random Processes

1. Symmetry:  RX(-τ) = RX(τ)

2. RX(0) ≥ |RX(τ)|  for all τ
3. RX(τ)  =  Rdecay(τ)  +  Rm(τ)  +  Rperiodic(τ) ,

where  Rdecay(τ)  is a function such that  Rdecay(τ) → 0  as  |τ| → ∞,  Rm(τ) = (mX)2    is the term
due to the mean of the random process,  and  Rperiodic(τ)  is a periodice function that is itself due to
a periodic component of the sample functions.

Ergodicity   (this will not be covered on the exam, but is included here for completeness)

Recall the law of large numbers.  Does it hold for random processes other than IID?  Sometimes yes,
sometimes no.  Processes for which it does are called ergodic.

Definition:  (not the standard mathematical definition)

A discrete-time stationary random process  {X(n):n =1,2,...}  is (strict-sense) ergodic if

1
n ∑

i=1

n
 g(X(i+1),…,X(i+m)  → E g(X(1),...,X(m))   almost surely as  n→∞

for any  m  and any function  g(x1,...,xm)  such that  E g(X1,…,Xm)   is well-defined.

A continuous-time stationary random process  {X(t): t∈[0,∞ )}  is (strict-sense) ergodic if

 
1
T ∫

0

T
 g(X(t+τi),…X(t+τm))  → E g(X(τ1),...,X(τm))   almost surely as  T→∞

for any  m,  τ1,...,τm  and any function  g(x1,...,xm)  such that  E g(X(τ1),…,X(τm))  is well-
defined.

For "two-sided" discrete- and continuous-time random processes, the above averages are replaced
by

1
2n+1 ∑

i=-n

n
  and  

1
2T ∫

-T

T
  ,  respectively.

The basic idea is that for ergodic processes, time averages converge to expected values.
As examples, the following are consequences of ergodicity

1.
1
n  ∑

i=1

n
 X(i) → EX,       

1
T ∫

0

T
 X(t) dt → EX

2.
1
n  ∑

i=1

n
 X

2
 (i) → EX

2
 ,       

1
T ∫

0

T
 X

2
 (t) dt → EX

2
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3.
1
n  ∑

i=1

n
 X(i)X(i+1) → RX(1),      

1
n  ∑

i=1

n
 X(i)X(i+m) → RX(m),

4.
1
T ∫

0

T
 X(t)X(t+τ) dt → RX(τ)

5.  
nA
N  → P(A)  where  A  is any event  and nA  is the number of times  A  occurs in  X(1),...,X(n)

For stationary processes that are not ergodic, time averages such as those above converge, but not to
the expected value.  Instead, all that we can say is

E 
 


 
1

n ∑
i=1

n
 g(X(i+1),…,X(i+m))   → E g(X(1),...,X(m))   as  n→∞

E 
 



 

1

T ∫
0

T
 g(X(t+τ i),…X(t+τm))  → E g(X(τ1),...,X(τm))     as  T→∞

Random Processes into Linear Filters

Here we focus only on continuous-time random processes and filters.  The situation is basically the
same for discrete-time random processes and filters, but we have not had the time to discuss it.

If the wide-sense stationary random process {X(t)} with mean  mX  and autocorrelation function  RX(τ)
is  the input to a linear filter with impulse response  h(t)  and frequency response  H(f),  then the output
of the filter is a wide-sense stationary random process {Y(t)}  with

mY  =  mX ∫
-∞

∞
 h(t) dt  =  mX H(0)

RX(τ)  =  RX(τ) * h(τ)  * h(-τ)    recall the defn of convolution:  x(t)*y(t) = ∫
-∞

∞
  x(u) y(t-u) du

Important Fact:

If the input to a linear filter is a Gaussian random process, then the output is a Gaussian random
process.

Power Spectral Density

The power spectral density of a WSS random process  {X(t)}  is

SX(f) =  F{RX(τ)}  =  ∫
-∞

∞
 RX(τ) e-j2πfτ

 dτ  =  Fourier transform of  RX(τ)

Properties of the power spectral density:

1. SX(f) ≥ 0.

2. SX(-f) = SX(f).

3. ∫
-∞

∞
 SX(f) dx   =  power in  {X(t)}
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4. 2 ∫
f1

f2
 SX(f) dx = power in {X(t)}  in the frequency band  [f1,f2] .

This is why it is called a power spectral density; i.e. one integrates it over a frequency band to
obtain the power in that band.

5. If  {X(t)}  is the input to a linear filter with frequency response  H(f),  then the output random
process  {Y(t)}  has power spectral density

SY(f)  =  SX(f) H(f) H(-f)  =  SX(f) |H(f)|2  

6. Alternate formula for the power spectral density (more difficult to work with)

SX(f)  =  
 

lim
T→∞

 
1
2T E |F{ XT(t)} |2  ,    where  XT(t) =  

 

 X(t), -T≤t≤T

0 ,  e l s e

7. Power spectral density of some simple processes:

a.  X(t) = A,  where  A  is a random variable

SX(f) =  E A2
  δ(f) .

b.  X(t)  =  A cos (2πft+Θ)  where  A  and  Θ  are independent random variables and  Θ  is
uniformly distributed on [0,2π).  Then

SX(f)  =  
1
2 E A2

  [δ(f-f o) + δ(f+fo)]
c.  If the input to a linear filter with frequency response  H(f)  is white noise  X(t)  with  SY(f) = c,
then the output has power spectral density

SY(f)  =  c |H(f)|2  


