Summary of Random Variable Concepts

This is a list of important concepts we have covered, rather than a review that devives or explains them.

Types of random variables

• discrete

A random variable X is discrete if there is a discrete set A (i.e. finite our countably infinite) such that $Pr(X \in A) = 1$.

continuous

A random variable X is continuous if Pr(X=x) = 0 for all values x.

• mixed (other)

A random variable X is continuous if it is neither discrete nor continuous. In other words there is a least one value x such that Pr(X=x)>0 and the sum of the probabilities of all values x with positive probability is not one.

The Probability Distribution of a Random Variable

The probability distribution of a random variable X can be described by the following three types of functions

• probability mass function (pmf) $p_X(x)$: for discrete random variables only

Defn: $p_X(x) = Pr(X=x)$

Key property: $Pr(X \in B) = \sum_{x \in B} p_X(x),$

• probability density function (pdf) $f_X(x)$: basically for continuous random variables, but with delta functions a density can also be used for discrete and mixed random variables. $f_X(x)$ is defined to be a function such that

$$Pr(X \in B) = \int_{B} f_X(x) dx$$
, this is also how it is principally used.

• cumulative distribution function (cdf) $F_X(x)$

Defn: $F_X(x) = Pr(X \le x)$

$$Pr(a < X \le b) = F_X(b) - F_X(a),$$

Relationships between pdf and cdf:

•
$$F_X(x) = \int_{-\infty}^{x} f_X(x') dx'$$

• $f_X(x) = \frac{d}{dx} F_X(x)$

Some common probability distributions:

- Discrete: binary, binomial, Poisson, geometric
- Continuous: uniform, Gaussian, exponential, Laplacian

Functions of Random Variables

Suppose X is a random variable and Y = g(X)

- Key fact: $Pr(Y \in B) = Pr(X \in \{x : g(x) \in B\})$
- Common question: Given knowledge of the function g and the distribution of X (i.e. of its pdf, pmf or cdf), find the probability distribution of Y (i.e. its pdf, pmf or cdf)
- Important preliminary steps:
 - 1. Identify the possible values of Y.
 - 2. Determine the type of Y (discrete, continuous or mixed).
- Special case, if X is continuous r.v. with density $f_X(x)$ and g(x) is a function with no flat segments except those on which $f_X(x) = 0$, then Y is a continuous r.v. with pdf

$$f_{Y}(y) = \sum_{i} f_{X}(x_{i}) \left| \frac{1}{g'(x_{i})} \right|$$

where $x_1, x_2,...$ are the values of x such that g(x) = y.

If g(x) has flat segments, then it is possible for $f_{Y}(y)$ to contain delta functions.

Expected Values

• For a random variable X with density $f_X(x)$ (X could be continuous, discrete or mixed), the expected value or mean value of X is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• For a discrete random variable with pmf $p_X(x)$, an alternative and usually more useful formula is

$$E[X] = \sum_{x} x p_X(x)$$
, where \sum_{x} means to sum over all the possiblex values of x

• Fundamental theorem of expectation: When Y = g(X),

$$E[Y] = E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

- Linearity of expectation: E[aX+b] = a E[X] + b (Generally speaking, for nonlinear functions, E[g(X)] ≠ g(E[X]))
- Moments: The nth moment of X is E[Xⁿ]
- Central moments: The nth central moment of X is $E[(X-E[X])^n]$
- Variance of X: $var(X) = E[(X-E[X])^2] = E[X^2] (E[X])^2$
- Chebychev's Inequality

$$\Pr(|X-E[X]| \ge \varepsilon) \le \frac{\sigma_X^2}{\varepsilon^2}$$

Pairs of Random Variables

Let X and Y be random variables. Each could be discrete, continuous or mixed. They need not be of the same type.

The Joint Distribution of a Pair of Random Variables:

Can be described by the following three types of functions

• Joint pmf: applies only when both X and Y are discrete

Defn:
$$p_{XY}(x,y) = Pr(X=x, Y=x)$$

Key property: $Pr((X,Y) \in A) = \sum_{(x,y)\in A} p_{XY}(x,y)$

Joint pdf: applies only when both X and Y are continuous AND Pr((X,Y)∈ A) = 0 for every set A having zero area.

Defn: the joint pdf is a function $f_{XY}(x,y)$ such that

$$Pr((X,Y) \in A) = \int_{A} \int f_{XY}(x,y) \, dx \, dy$$

An example of a pair of continuous random variables that do not have joint density: X is continuous and Y = g(X).

Note: We have not introduced delta functions for use in joint densities. For pairs of random variables, they are too complicated to be of use.

• Joint cdf:

Defn: $F_{XY}(x,y) = Pr(X \le x, Y \le y)$

Property: $Pr(a \le X \le b \text{ and } c \le Y \le d) = F_{XY}(b,d) - F_{XY}(a,d) - F_{XY}(b,c) + F_{XY}(a,c)$

Interrelationships

•
$$F_{XY}(x,y) = \int_{\infty}^{x} \int_{\infty}^{y} f_{XY}(x',y') dy' dx'$$
 if X and Y have joint density

- $F_{XY}(x,y) = \sum_{x' \le x, y' \le y} p_{XY}(x,y)$ if X and Y are discrete
- $f_{XY}(x,y) = \frac{d^2}{dx dy} F_{XY}(x,y)$ if X and Y have joint density
- marginal distribution of X (similar relationships for Y)

$$F_{X}(x) = F_{XY}(x,\infty)$$
$$f_{X}(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) dy$$
$$p_{X}(x) = \sum_{y} p_{XY}(x,y)$$

• A pair of Gaussian random variables has joint density of the form

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-r^2}} \exp\left\{-\frac{(x-\overline{X})^2}{\sigma_X^2} - \frac{2r(x-\overline{X})(y-\overline{Y})}{\sigma_X\sigma_Y} + \frac{(y-\overline{Y})^2}{2\sigma_Y^2}\right\}$$

where $-1 \le r \le 1$. The marginal density of X is

$$f_{X}(x) = \frac{1}{\sqrt{2\pi\sigma_{X}^{2}}} \exp\left\{-\frac{(x-\bar{X})^{2}}{2\sigma_{X}^{2}}\right\}$$

Independence

• Defn: Random variables X and Y are independent if the events $\{X \in A\}$ and $\{Y \in B\}$ are independent for all A and B. In other words X and Y are independent if

 $Pr(X \in A, Y \in B) = Pr(X \in A) Pr(X \in B)$ for all A and B

Each of the following is an equivalent conditions for independence:

- $p_{XY}(x,y) = p_X(x) p_Y(y)$ all x,y (applies only if X and Y are discrete)
- $f_{XY}(x,y) = f_X(x) f_Y(y)$ all x,y (applies only if X and Y are continuous with a joint density)
- $F_{XY}(x,y) = F_X(x) F_Y(y)$ all x,y (applies to any pair of random variables)

Equal vs. Identical (not covered on Exam 2)

- Defn: Random variables X and Y are <u>equal</u>, i.e. X = Y, if Pr(X=Y)=1, i.e. the produce the same value with probability one.
- Defn: Random variables X and Y are <u>identical</u> if they have the same probability distribution, i.e. they have the same cdf and pdf and if discrete they have the same pmf.
- equal \Rightarrow identical. identical \Rightarrow equal.
- independent \Rightarrow not equal; equivalently equal \Rightarrow not independent

Conditional Probability Distributions

	type of function describing conditional probability distribution		
type of conditioning	pmf	pdf	cdf
$X \in B$	$p_X(x B)$	$f_X(x B)$	$F_X(x B)$
Y∈B	$p_X(x Y \in B)$	$f_X(x Y \in B)$	$F_X(x Y \in B)$
Y=y	$p_{X Y}(x y)$	$f_{X\mid Y}(x\mid y)$	$F_{X Y}(x y)$
nonumerical event	p _X (x event)	p _X (x event)	F _X (x event)

Conditional pmf's: These are defined by

$$p_X(x|B) = Pr(X=x|X \in B)$$

$$p_X(x|Y \in B) = Pr(X=x|X \in B)$$

$$p_{X|Y}(x|y) = Pr(X=x|Y=y)$$

$$p_X(x|event) = Pr(X=x|event)$$

As functions of x, the conditional pmf's have all the usual properties of pmf's. Most importantly they are summed to compute conditional probabilities, e.g.

$$Pr(X \in A | Y=y) = \sum_{x \in A} p_{X|Y}(x|y)$$

Conditional pdf's: The conditional pdf's are defined as functions that one integrates to compute a conditional probability. Specifically,

$$Pr(X \in A | X \in B) = \int_{A} f_X(x|B) dx$$
$$Pr(X \in A | Y \in B) = \int_{A} f_X(x|Y \in B) dx$$
$$Pr(X \in A | Y = y) = \int_{A} f_{X|Y}(x|y) dx$$
$$Pr(X \in A | event) = \int_{A} f_X(x|event) dx$$

As functions of x, the conditional pmf's have all the usual properties of pdf's.

Conditional cdf's: These are defined by

$$F_X(x|B) = Pr(X \le x | X \in B)$$

$$F_X(x|Y \in B) = Pr(X \le x | X \in B)$$

$$F_{X|Y}(x|y) = Pr(X \le x | Y = y)$$

$$F_X(x|event) = Pr(X \le x | event)$$

As functions of x, the conditional pmf's have all the usual properties of cdf's.

Notes:

- Of all the above functions, the following are generally the most useful and nicest to work with: p_X(x), p_Y(y), p_{XY}(x,y), p_{X|Y}(x|y), p_{Y|X}(y|x), f_X(x), f_Y(y), f_{XY}(x,y), f_{X|Y}(x|y), f_{Y|X}(y|x)
- Conditioning can change the type of a random variable X. For example, X could be continuous, but conditioned on Y = y, X could be discrete.

We use a conditional pmf when X is conditionally discrete. We use a conditional pdf when X is conditionally continuous. We can also use a conditional pmf when X is conditionally discrete or mixed, but it will contain delta functions.

The Big Four Rrelationships

	X&Y discrete	X&Y continuous with a joint density
1.	$p_{XY}(x,y) = p_Y(y) p_{X Y}(x y)$	$f_{XY}(x,y) = f_Y(y) f_{X Y}(x y)$
2.	$p_{Y X}(y x) = \frac{p_{XY}(x,y)}{p_X(x)}$	$f_{Y X}(y x) = \frac{f_{XY}(x,y)}{f_X(x)}$
3. Bayes rule	$p_{X Y}(x y) = \frac{p_{Y X}(y x)p_X(x)}{p_Y(y)}$	$f_{X Y}(x y) = \frac{f_{Y X}(y x)f_X(x)}{f_Y(y)}$
4. Total prob.	$p_X(x) = \sum_{y} p_{XY}(x,y) = \sum_{y} p_Y(y)$	$(y) p_{X Y}(x y)$
		$f_X(x) = \int f_{XY}(x,y) dy = \int f_Y(y) f_{X Y}(x y) dy$

Other relationships:

- $f_X(x|B) = \begin{cases} f_X(x), x \in B \\ Pr(X \in B, else) \end{cases}$
- $F_X(x|B) = \int_{\infty}^{x} f_X(x'|B) dx'$ when X is conditionally continuous

=
$$\sum_{x' \le x} p_X(x'|B)$$
 when X is conditionally discrete

- $f_X(x|B) = \frac{d}{dx} F_X(x|B)$
- Same as the above but for conditioning on $Y \in B$ or Y=y or nonnumerical conditioning.
- $f_X(x|Y \in B) = \frac{\int B f_{XY}(x,y) \, dy}{Pr(Y \in B)}$
- Other total probability laws: These can be straightforwardly derived, though we haven't derived them in class.

If $B_1,...,B_n$ form a partition, then

$$f_X(x) = \sum_{i=1}^n f_X(x|B_i) \operatorname{Pr}(X \in B_i)$$
$$p_X(x) = \sum_{i=1}^n p_X(x|B_i) \operatorname{Pr}(X \in B_i)$$
$$\operatorname{Pr}(X \in A) = \int_{-\infty}^{\infty} \operatorname{Pr}(X \in A|Y=y) f_Y(y) dy$$
$$\operatorname{Pr}(X \in A) = \sum_y \operatorname{Pr}(X \in A|Y=y) p_Y(y)$$