Summary of Random Variable Concepts

March 17, 2000
This is a list of important concepts we have covered, rather than a review that devives or explains them.

Types of random variables

- discrete

A random variable X is discrete if there is a discrete set A (i.e. finite our countably infinite) such that $\operatorname{Pr}(\mathrm{X} \in \mathrm{A})=1$.

- continuous

A random variable X is continuous if $\operatorname{Pr}(\mathrm{X}=\mathrm{x})=0$ for all values x .

- mixed (other)

A random variable X is continuous if it is neither discrete nor continuous. In other words there is a least one value x such that $\operatorname{Pr}(\mathrm{X}=\mathrm{x})>0$ and the sum of the probabilities of all values x with positive probability is not one.

The Probability Distribution of a Random Variable

The probability distribution of a random variable X can be described by the following three types of functions

- probability mass function (pmf) $\mathrm{p} X(\mathrm{x})$: for discrete random variables only

Defn: $\mathrm{px}_{\mathrm{X}}(\mathrm{x})=\operatorname{Pr}(\mathrm{X}=\mathrm{x})$
Key property: $\operatorname{Pr}(\mathrm{X} \in \mathrm{B})=\sum_{\mathrm{x} \in \mathrm{B}} \mathrm{p}_{\mathrm{X}}(\mathrm{x})$,

- probability density function (pdf) $\mathrm{f}_{\mathrm{X}}(\mathrm{x})$: basically for continuous random variables, but with delta functions a density can also be used for discrete and mixed random variables. $\mathrm{f}_{\mathrm{X}}(\mathrm{x})$ is defined to be a function such that

$$
\operatorname{Pr}(X \in B)=\int_{B} f_{X}(x) d x, \quad \text { this is also how it is principally used. }
$$

- cumulative distribution function (cdf) $\mathrm{F}_{\mathrm{X}}(\mathrm{x})$

Defn: $\mathrm{F}_{\mathrm{X}}(\mathrm{x})=\operatorname{Pr}(\mathrm{X} \leq \mathrm{x})$
$\operatorname{Pr}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})=\mathrm{F}_{\mathrm{X}}(\mathrm{b})-\mathrm{F}_{\mathrm{X}}(\mathrm{a})$,
Relationships between pdf and cdf:

- $F_{X}(x)=\int_{-\infty}^{x} f_{X}\left(x^{\prime}\right) d x^{\prime}$
- $\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{F}_{\mathrm{X}}(\mathrm{x})$

Some common probability distributions:

- Discrete: binary, binomial, Poisson, geometric
- Continuous: uniform, Gaussian, exponential, Laplacian

Functions of Random Variables

Suppose X is a random variable and $Y=g(X)$

- Key fact: $\operatorname{Pr}(\mathrm{Y} \in \mathrm{B})=\operatorname{Pr}(\mathrm{X} \in\{\mathrm{x}: \mathrm{g}(\mathrm{x}) \in \mathrm{B}\})$
- Common question: Given knowledge of the function g and the distribution of X (i.e. of its pdf, pmf or cdf), find the probability distribution of Y (i.e. its pdf, pmf or cdf)
- Important preliminary steps:

1. Identify the possible values of Y.
2. Determine the type of Y (discrete, continuous or mixed).

- Special case, if X is continuous r.v. with density $f_{X}(x)$ and $g(x)$ is a function with no flat segments except those on which $\mathrm{f}_{\mathrm{X}}(\mathrm{x})=0$, then Y is a continuous r.v. with pdf

$$
\mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\sum_{\mathrm{i}} \mathrm{f}_{\mathrm{X}}\left(\mathrm{x}_{\mathrm{i}}\right)\left|\frac{1}{\mathrm{~g}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)}\right|
$$

where x_{1}, x_{2}, \ldots are the values of x such that $g(x)=y$.
If $\mathrm{g}(\mathrm{x})$ has flat segments, then it is possible for $\mathrm{f}_{\mathrm{Y}}(\mathrm{y})$ to contain delta functions.

Expected Values

- For a random variable X with density $f_{X}(x)$ (X could be continuous, discrete or mixed), the expected value or mean value of X is

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- For a discrete random variable with $\mathrm{pmf} \mathrm{p}_{\mathrm{X}}(\mathrm{x})$, an alternative and usually more useful formula is

$$
\mathrm{E}[\mathrm{X}]=\sum_{\mathrm{x}} \mathrm{x} \mathrm{p}_{\mathrm{X}}(\mathrm{x}), \quad \text { where } \sum_{\mathrm{x}} \text { means to sum over all the possiblex values of } \mathrm{x}
$$

- Fundamental theorem of expectation: When $\mathrm{Y}=\mathrm{g}(\mathrm{X})$,

$$
\mathrm{E}[\mathrm{Y}]=\mathrm{E}[\mathrm{~g}(\mathrm{X})]=\int_{-\infty}^{\infty} \mathrm{g}(\mathrm{x}) \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{dx}
$$

- Linearity of expectation: $\mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{a} \mathrm{E}[\mathrm{X}]+\mathrm{b}$
(Generally speaking, for nonlinear functions, $E[g(X)] \neq g(E[X])$)
- Moments: The nth moment of X is $\mathrm{E}\left[\mathrm{X}^{n}\right]$
- Central moments: The nth central moment of X is $\mathrm{E}\left[(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{\mathrm{n}}\right]$
- Variance of $\mathrm{X}: \operatorname{var}(\mathrm{X})=\mathrm{E}\left[(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{2}\right]=\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2}$
- Chebychev's Inequality

$$
\operatorname{Pr}(|\mathrm{X}-\mathrm{E}[\mathrm{X}]| \geq \varepsilon) \leq \frac{\sigma_{\mathrm{X}}^{2}}{\varepsilon^{2}}
$$

Pairs of Random Variables

Let X and Y be random variables. Each could be discrete, continuous or mixed. They need not be of the same type.

The Joint Distribution of a Pair of Random Variables:

Can be described by the following three types of functions

- Joint pmf: applies only when both X and Y are discrete

Defn: $\mathrm{pXY}_{\mathrm{X}}(\mathrm{x}, \mathrm{y})=\operatorname{Pr}(\mathrm{X}=\mathrm{x}, \mathrm{Y}=\mathrm{x})$
Key property: $\operatorname{Pr}((\mathrm{X}, \mathrm{Y}) \in \mathrm{A})=\sum_{(\mathrm{x}, \mathrm{y}) \in \mathrm{A}} \mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})$

- Joint pdf: applies only when both X and Y are continuous $\mathrm{AND} \operatorname{Pr}((\mathrm{X}, \mathrm{Y}) \in \mathrm{A})=0$ for every set A having zero area.
Defn: the joint pdf is a function $\mathrm{f}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})$ such that

$$
\operatorname{Pr}((X, Y) \in A)=\iint_{A} f_{X Y}(x, y) d x d y
$$

An example of a pair of continuous random variables that do not have joint density:
X is continuous and $Y=g(X)$.
Note: We have not introduced delta functions for use in joint densities. For pairs of random variables, they are too complicated to be of use.

- Joint cdf:

Defn: $\mathrm{F}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})=\operatorname{Pr}(\mathrm{X} \leq \mathrm{x}, \mathrm{Y} \leq \mathrm{y})$
Property: $\operatorname{Pr}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b}$ and $\mathrm{c} \leq \mathrm{Y} \leq \mathrm{d})=\mathrm{F}_{\mathrm{XY}}(\mathrm{b}, \mathrm{d})-\mathrm{F}_{\mathrm{XY}}(\mathrm{a}, \mathrm{d})-\mathrm{F}_{\mathrm{XY}}(\mathrm{b}, \mathrm{c})+\mathrm{F}_{\mathrm{XY}}(\mathrm{a}, \mathrm{c})$
Interrelationships

- $F_{X Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X Y}\left(x^{\prime}, y^{\prime}\right) d y^{\prime} d x^{\prime}$ if X and Y have joint density
- $F_{X Y}(x, y)=\sum_{x^{\prime} \leq x, y^{\prime} \leq y} p_{X Y}(x, y)$ if X and Y are discrete
- $f_{X Y}(x, y)=\frac{d^{2}}{d x d y} F_{X Y}(x, y)$ if X and Y have joint density
- marginal distribution of X (similar relationships for Y)

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{X}}(\mathrm{x})=\mathrm{F}_{\mathrm{XY}}(\mathrm{x}, \infty) \\
& \mathrm{f}_{\mathrm{X}}(\mathrm{x})=\int_{-\infty}^{\infty} \mathrm{f}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y}) \mathrm{dy} \\
& \mathrm{p}_{\mathrm{X}}(\mathrm{x})=\sum_{\mathrm{y}} \mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y}
\end{aligned}
$$

- A pair of Gaussian random variables has joint density of the form

$$
\mathrm{f}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\mathrm{r}^{2}}} \exp \left\{-\frac{\frac{(\mathrm{x}-\overline{\mathrm{X}})^{2}}{\sigma_{\mathrm{x}}^{2}}-\frac{2 \mathrm{r}(\mathrm{x}-\overline{\mathrm{X}})(\mathrm{y}-\overline{\mathrm{Y}})}{\sigma_{\mathrm{X}} \sigma_{\mathrm{Y}}}+\frac{(\mathrm{y}-\overline{\mathrm{Y}})^{2}}{2 \sigma_{\mathrm{Y}}^{2}}}{2\left(1-\mathrm{r}^{2}\right)}\right\}
$$

where $-1 \leq \mathrm{r} \leq 1$. The marginal density of X is

$$
\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\frac{1}{\sqrt{2 \pi \sigma_{\mathrm{X}}^{2}}} \exp \left\{-\frac{(\mathrm{x}-\overline{\mathrm{X}})^{2}}{2 \sigma_{\mathrm{X}}^{2}}\right\}
$$

Independence

- Defn: Random variables X and Y are independent if the events $\{X \in A\}$ and $\{Y \in B\}$ are indepenendent for all A and B. In other words X and Y are independent if

$$
\operatorname{Pr}(\mathrm{X} \in \mathrm{~A}, \mathrm{Y} \in \mathrm{~B})=\operatorname{Pr}(\mathrm{X} \in \mathrm{~A}) \operatorname{Pr}(\mathrm{X} \in \mathrm{~B}) \text { for all } \mathrm{A} \text { and } \mathrm{B}
$$

Each of the following is an equivalent conditions for independence:

- $p_{X Y}(x, y)=p_{X}(x) p_{Y}(y)$ all $x, y \quad$ (applies only if X and Y are discrete)
- $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$ all x, y (applies only if X and Y are continuous with a joint density)
- $\quad F_{X Y}(x, y)=F_{X}(x) F_{Y}(y)$ all x, y (applies to any pair of random variables)

Equal vs. Identical (not covered on Exam 2)

- Defn: Random variables X and Y are equal, i.e. $\mathrm{X}=\mathrm{Y}$, if $\operatorname{Pr}(\mathrm{X}=\mathrm{Y})=1$, i.e. the produce the same value with probability one.
- Defn: Random variables X and Y are identical if they have the same probability distribution, i.e. they have the same cdf and pdf and if discrete they have the same pmf.
- equal \Rightarrow identical. \quad identical \Rightarrow equal.
- independent \Rightarrow not equal; equivalently equal \Rightarrow not independent

Conditional Probability Distributions

type of conditioning	type of functtion describing conditional probability distribution		
	pmf	pdf	cdf
$\mathrm{X} \in \mathrm{B}$	$\mathrm{p}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{B})$	$\mathrm{f}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{B})$	$\mathrm{F}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{B})$
$\mathrm{Y} \in \mathrm{B}$	$\mathrm{p}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{Y} \in \mathrm{B})$	$\mathrm{f}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{Y} \in \mathrm{B})$	$\mathrm{F}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{Y} \in \mathrm{B})$
$\mathrm{Y}=\mathrm{y}$	$\mathrm{p}_{\mathrm{X} \mid \mathrm{Y}}(\mathrm{x} \mid \mathrm{y})$	$\mathrm{f}_{\mathrm{X} \mid \mathrm{Y}}(\mathrm{x} \mid \mathrm{y})$	$\mathrm{F}_{\mathrm{X} \mid \mathrm{Y}}(\mathrm{x} \mid \mathrm{y})$
nonumerical event	px(x\|event)	px (x\|event)	$\mathrm{F}_{\mathrm{X}}(\mathrm{x} \mid$ event $)$

Conditional pmf's: These are defined by

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{X}=\mathrm{x} \mid \mathrm{X} \in \mathrm{~B}) \\
& \mathrm{p}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{Y} \in \mathrm{~B})=\operatorname{Pr}(\mathrm{X}=\mathrm{x} \mid \mathrm{X} \in \mathrm{~B}) \\
& \mathrm{p}_{\mathrm{X} \mid \mathrm{Y}}(\mathrm{x} \mid \mathrm{y})=\operatorname{Pr}(\mathrm{X}=\mathrm{x} \mid \mathrm{Y}=\mathrm{y}) \\
& \mathrm{p}_{\mathrm{X}}(\mathrm{x} \mid \text { event })=\operatorname{Pr}(\mathrm{X}=\mathrm{x} \mid \text { event })
\end{aligned}
$$

As functions of x, the conditional pmf's have all the usual properties of pmf's. Most importantly they are summed to compute conditional probabilities, e.g.

$$
\operatorname{Pr}(\mathrm{X} \in \mathrm{~A} \mid \mathrm{Y}=\mathrm{y})=\sum_{\mathrm{x} \in \mathrm{~A}} \mathrm{p}_{\mathrm{X} \mid \mathrm{Y}}(\mathrm{x} \mid \mathrm{y})
$$

Conditional pdf's: The conditional pdf's are defined as functions that one integrates to compute a conditional probability. Specifically,

$$
\begin{aligned}
& \operatorname{Pr}(X \in A \mid X \in B)=\int_{A} f_{X}(x \mid B) d x \\
& \operatorname{Pr}(X \in A \mid Y \in B)=\int_{A} f_{X}(x \mid Y \in B) d x \\
& \operatorname{Pr}(X \in A \mid Y=y)=\int_{A} f_{X} \mid Y(x \mid y) d x \\
& \operatorname{Pr}(X \in A \mid \text { event })=\int_{A} f_{X}(x \mid \text { event }) d x
\end{aligned}
$$

As functions of x , the conditional pmf's have all the usual properties of pdf's.
Conditional cdf's: These are defined by

$$
\begin{aligned}
& F_{X}(x \mid B)=\operatorname{Pr}(X \leq x \mid X \in B) \\
& F_{X}(x \mid Y \in B)=\operatorname{Pr}(X \leq x \mid X \in B) \\
& F_{X \mid Y}(x \mid y)=\operatorname{Pr}(X \leq x \mid Y=y) \\
& F_{X}(x \mid \text { event })=\operatorname{Pr}(X \leq x \mid \text { event })
\end{aligned}
$$

As functions of x , the conditional pmf's have all the usual properties of cdf's.

Notes:

- Of all the above functions, the following are generally the most useful and nicest to work with:
$p_{X}(x), p_{Y}(y), p_{X Y}(x, y), p_{X \mid Y}(x \mid y), p_{Y \mid X}(y \mid x), f_{X}(x), f_{Y}(y), f_{X Y}(x, y), f_{X \mid Y}(x \mid y), f_{Y \mid X}(y \mid x)$
- Conditioning can change the type of a random variable X. For example, X could be continuous, but conditioned on $\mathrm{Y}=\mathrm{y}$, X could be discrete.
We use a conditional pmf when X is conditionally discrete. We use a conditional pdf when X is conditionally continuous. We can also use a conditional pmf when X is conditionally discrete or mixed, but it will contain delta functions.

The Big Four Rrelationships

1.

X\&Y discrete

X\&Y continuous with a joint density

$$
\mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})=\mathrm{p}_{\mathrm{Y}}(\mathrm{y}) \mathrm{p}_{\mathrm{X}} \mid \mathrm{Y}(\mathrm{x} \mid \mathrm{y})
$$

$$
f_{X Y}(x, y)=f_{Y}(y) f_{X \mid Y}(x \mid y)
$$

2. $\operatorname{pry}_{Y \mid X(y \mid x)}=\frac{p_{X Y}(x, y)}{p_{X}(x)}$

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

$$
\mathrm{p}_{\mathrm{X} \mid \mathrm{Y}}(\mathrm{x} \mid \mathrm{y})=\frac{\mathrm{p}_{\mathrm{Y} \mid \mathrm{X}}(\mathrm{y} \mid \mathrm{x}) \mathrm{p}_{\mathrm{X}}(\mathrm{x})}{\mathrm{p}_{\mathrm{Y}}(\mathrm{y})}
$$

3. Bayes rule
4. Total prob.

$$
\mathrm{p}_{\mathrm{X}}(\mathrm{x})=\sum_{\mathrm{y}} \mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{y}} \mathrm{p} Y(\mathrm{y}) \mathrm{p}_{\mathrm{X} \mid \mathrm{Y}}(\mathrm{x} \mid \mathrm{y})
$$

$$
f_{X}(x)=\int f_{X Y}(x, y) d y=\int f_{Y}(y) f_{X \mid Y}(x \mid y) d y
$$

Other relationships:

- $f_{X}(x \mid B)=\left\{\begin{array}{l}f_{X}(x), x \in B \\ \operatorname{Pr}(X \in B, \text { else })\end{array}\right.$
- $F_{X}(x \mid B)=\int_{-\infty}^{x} f_{X}\left(x^{\prime} \mid B\right) d x^{\prime}$ when X is conditionally continuous

$$
=\sum_{x^{\prime} \leq x} p_{X}\left(x^{\prime} \mid B\right) \text { when } X \text { is conditionally discrete }
$$

- $\mathrm{f}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{B})=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{F}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{B})$
- Same as the above but for conditioning on $\mathrm{Y} \in \mathrm{B}$ or $\mathrm{Y}=\mathrm{y}$ or nonnumerical conditioning.
- $f_{X}(x \mid Y \in B)=\frac{\int_{B} f_{X Y}(x, y) d y}{\operatorname{Pr}(Y \in B)}$
- Other total probability laws: These can be straightforwardly derived, though we haven't derived them in class.

If $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$ form a partition, then

$$
\begin{aligned}
\mathrm{f}_{\mathrm{X}}(\mathrm{x}) & =\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{X}}\left(\mathrm{x} \mid \mathrm{B}_{\mathrm{i}}\right) \operatorname{Pr}\left(\mathrm{X} \in \mathrm{~B}_{\mathrm{i}}\right) \\
\mathrm{p}_{\mathrm{X}}(\mathrm{x}) & =\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{X}}\left(\mathrm{x} \mid \mathrm{B}_{\mathrm{i}}\right) \operatorname{Pr}\left(\mathrm{X} \in \mathrm{~B}_{\mathrm{i}}\right) \\
\operatorname{Pr}(\mathrm{X} \in \mathrm{~A}) & =\int_{-\infty}^{\infty} \operatorname{Pr}(\mathrm{X} \in \mathrm{~A} \mid \mathrm{Y}=\mathrm{y}) \mathrm{f}_{\mathrm{Y}}(\mathrm{y}) \mathrm{dy} \\
\operatorname{Pr}(\mathrm{X} \in \mathrm{~A}) & =\sum_{\mathrm{y}} \operatorname{Pr}(\mathrm{X} \in \mathrm{~A} \mid \mathrm{Y}=\mathrm{y}) \mathrm{p}_{\mathrm{Y}}(\mathrm{y})
\end{aligned}
$$

