A CMOS DIGITALLY CONTROLLED, LOW POWER, VARIABLE GAIN HEADPHONE AMPLIFIER

December 5, 2007

David Bowlus Jonathan Yamoty Lu Luo

INTRODUCTION

- Application
- Goals
- Topology
- Simulation Results
- Conclusion

GENERAL USE

- Amplify the signal output by a small music device
- Connect between device and a set of headphones
- Adjustable volume control

PROJECT GOALS

- Variable gain 0dB to 20dB
- Low total power consumption
- Matched input / output impedance
- Bandwidth typical for audio applications
- Maximum input signal = 50 mV
- Total harmonic distortion < 1%

TOPOLOGY

- Current generation stage
- Input stage
- Variable gain stage
- Output stage

CURRENT SOURCE / BIAS GENERATION STAGE

- Supplies current to each stage
- Supplies desired voltage bias
- Supplies gate voltages
- Keeps transistors in saturation
- Headroom considerations

THE INPUT STAGE

- Common gate with degeneration topology
- Sets input impedance
 - Typical headphone impedance: 75-150 Ohms
- Generates Gain (~23dB)
- Rin = 1/gm1
- Gain = (gm1 + gmb1) / gm2

VOLUME CONTROL STAGE

- Allows the overall gain to be adjusted from 0dB to 20dB
- Gain is changed by switching the amount of current driven through the stage
- The switching is done by a digital control
- Common source with degeneration topology
- Gain = -gm*Rd/(1+gm*Rs)

THE OUTPUT STAGE

- Source follower topology
- A buffer stage
- Used to set the output impedance
 - Typical headphone impedance: 75-150 Ohms
- Rout = 1/gm
- Gain = gm/ (gm+gmb)
 - Approximately -3dB
- Input stage compensates for drop in gain

SIMULATION RESULTS GAIN FOR EACH VOLUME LEVEL

SIMULATION RESULTS LINEARITY

SIMULATION RESULTS

Parameter	Specification	Design	
Power Supply	2.5 V	2.5 V	
Current Supply	100 uA	100 uA	
Max Gain	20 dB	19.78 dB	
Min Gain	0 dB	-0.2711 to 0.513 dB	
Input Impedance	100 Ω	98.38 Ω	
Output Impedance	100 Ω	100.3 Ω	
Frequency Range	100 Hz to 23 KHz	100 Hz to 23 KHz	
Power Consumption	< 6 mW	3.77 mW	
Max Input Signal	50 mV	40 mV (for linearity)	
THD	< 1% (at max gain)	0.7537% (1mV input)	

SIMULATION RESULTS PROCESS CORNERS

Parameter	Process Corners Variation				
	тт	FF_0°C	FF_75°C	SS_0°C	SS_75°C
Gain (at max volume)	19.78dB	21.73dB	19.02dB	19.5dB	2.568dB
Input Impedance	98.38 Ω	80.46 Ω	113.4 Ω	89.85 Ω	500.1 Ω
Output Impedance	100.3 Ω	86.85 Ω	107.3 Ω	96.69 Ω	119.7 Ω
Power Consumption	3.77mW	3.851mW	3.798mW	3.724mW	3.66mW

SIMULATION RESULTS DRC AND LVS CLEAN

CONCLUSION

- The circuit simulations match our goals
- Only the maximum input signal was affected by linearity
- We based our design on the specifications of other common headphone amplifiers