Class D High Power Audio Amplifier

December 5, 2007

Mohammad Adeel
Farah Shariff
BoQiang Xiao
Contents

- Motivation
- Design Goals
- System Overview
- Individual Stage Design
- Layout
- Results
- Challenges
- Questions
Motivation

- Why Class D?
- Class D Features
 - Switching Amplifier
 - Pulse Width Modulation (PWM)
- High Power / High Efficiency
- Driver for speakers and headphones
- Portable Audio Applications
 - Cell Phones, PDAs, GPS
Design Goals

- Peak Output Power ≥ 1 Watt
- Efficiency $\geq 85\%$
- THD $\leq 0.5\%$
- Bandwidth = 20 Hz to 20 kHz
- Maximum Input Swing = 2.5 Vppk
- Maximum Output Swing = 5 Vppk
- Power Dissipation = 75 to 150 mWatts
System Overview

- Triangle Wave Generator
- Comparator
- Level Shifter
- Output Stages
Triangle Wave Generator

- $V_{\text{IN}} = 250$kHz squarewave

- System of Current Mirrors

- Output Mirrors acting as Push-Pull Architecture

- Slew Rate to linearize V_{rise} & V_{fall}

- Transmission Gates to switch between charge / discharge

$$I_{SS} = I_{C} = C \frac{dv}{dt}$$
Comparator

- Multiple Potential Architectures
 - One / Two Stage
 - Telescopic / Folded Cascode
 - Gain Boosting
- Two stage design selected
 - High Gain
 - MHz range Bandwidth
 - Average Power Consumption
- Trade off between Gain – BW

\[A_v = -g_m \left(\frac{r_{01}}{r_{02}} \right) \propto I_D^{-\frac{1}{2}} \]

\[r_0 = \frac{1}{\lambda I_D} \propto L \]
Level Shifter

- High Speed Architecture
- SE Input, Double-Ended Output
- High Dynamic Shift
- Delay ~ picoseconds
- Inverters sized for equal transitions
Output Buffer Stages

- PWM Speaker Drivers
- Inverter Chain
 - Lowest Cross Conduction
 - Minimum and equal Rise / Fall Times
 - Minimum Delay
- BTL – 2x the voltage swing

\[
F = \frac{C_{out}}{C_{in}}
\]

\[
N = \frac{\log(F)}{\log(f_{opt})} \quad \text{with} \quad f_{opt} = 3.6
\]
Layout

Triangle wave Generator

Level Shifter

Comparator

Output Stages
Results

Table 1: System Results

\[
THD \ (\%) = \frac{P_2 + P_3 + P_4 + \ldots P_N}{P_1}
\]

where \(P_1 \) is at the audio frequency

\[
Eff. \ (\%) = \frac{P_{LOAD}}{V_{dd \ 2.5} \ast I_{dd \ 2.5} + V_{dd \ 5} \ast I_{dd \ 5}}
\]

Table 2: Temperature Variation
Results (cont.)

THD Analysis with DC Offset

THD Analysis with out DC Offset

PWM and Reconstructed Signal
Design Challenges

◦ Designing for two supply rails
 • How to Level Shift?

◦ Triangle Wave Generator sizing
 • Intricate tweaking to minimize nonlinearity in the slewing

◦ Input Pre-Amplifier
 • DC bias matching and high voltage swing

◦ Comparator Sizing
 • Gain bandwidth compromises

◦ Simulation Time
 • CAEN disk quota restrictions
Questions

Mohammad Adeel
Farah Shariff
BoQiang Xiao