A CMOS LNA and Mixer for FM Receivers

Mao-Ter Chen, Wei-Ling Chiang, Yohan Kim
Introduction

- Continuous demand for high performance, low power RF circuits
- CMOS provides a favorable environment to integrate analog and digital on a single chip
- FM Band (88 – 108MHz)
Design goals

LNA:
- Input matching network (50Ω)
- Enough gain to overcome noise in later stages
- Low Power
- Linearity

MIXER:
- Translate the RF signals with minimal distortion
- High gain, low power consumption
LNA—Choosing Topology

- Why 2 stage cascode common gate?
- Isolation from output to input and better power supply noise rejection
- Increase output impedance
In RF applications, impedance is usually 50 Ω (matched to antenna)

\[Z_{in} = \frac{sL}{sL(g_m + sC_{gs}) + 1} = 50 \]

Assume Cgs equals to 10pF,

\[\omega_0^2 = \frac{1}{L_2C_{gs}} = \frac{1}{10^{-11} \times L_2} = (2\pi \times 100 \times 10^6)^2 \]

\[\Rightarrow L_2 = 253.3\, nH \to off-chip \]
LNA - Gain

- Gain $A_v = \frac{g_m g_{m1} R_1}{g_{m1} + s C_{gs1}} \approx g_m R_1$

 Too high: early mixer saturation and bad linearity
 Too small: NF of whole system increases

- Ideally, $A_v = 15 \div 20\, dB$
- Our design: $A_v = g_m R_1 = 20 \log(0.022 \times 600) = 22\, dB$
S-Parameter and stability

For unconditional stability,

\[K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\square|^2}{2|S_{12}S_{21}|} > 1 \]

\[|\square| = |S_{11}S_{22} - S_{12}S_{21}| < 1 \]
Mixer—down conversion

- Simple switch as a mixer
- Implementation with NMOS

\[V_{IF}(t) = K V_{RF}(t)V_{LO}(t) = K \cos 2\pi f_{RF} t \cos 2\pi f_{LO} t \]
\[= \frac{K}{2} [\cos 2\pi (f_{RF} - f_{LO}) t + \cos 2\pi (f_{RF} + f_{LO}) t] \]

- RF frequency = 100MHz
- LO frequency = 90MHz
- IF frequency = 10MHz
Mixer Topology

- Active double balanced mixer Gilbert Cell
- Rejection of LO coupling
- Single-ended I/O port

● DC bias circuit
● Current mirror
● R1 for output voltage level
Input signal setting

- For RF input:
 \[V_{RF} = 1\text{mV} \]
- For LO input:
 \[V_{LO} = 0/1.0\text{V (peak to peak)} \]
- M1 and M2 are chosen long and wide transistors
- Switch transistors (M3~M6) are set appropriately
Transient simulation and Spectrum

- Total Gain = -39.65 - (79.32) = 39.67 dB
- Minus DC level
System Performance - Noise figure

LNA: 3.77 dB
Mixer: 10.14 dB

\[NF_{total} = NF_1 + \frac{NF_2 - 1}{G_1} + \frac{NF_3 - 1}{G_1 G_2} + \ldots + \frac{NF_n - 1}{G_1 G_2 \ldots G_{n-1}} \]
System Performance - 1dB compression point

- LNA 1dB-compression level
- Mixer 1dB-compression level
System Schematic and Layout

LNA

Mixer
Total specifications

<table>
<thead>
<tr>
<th></th>
<th>LNA</th>
<th>This work</th>
<th>Karanikolas, A.N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power dissipation</td>
<td></td>
<td>3.9mW</td>
<td>20mW</td>
</tr>
<tr>
<td>Noise figure</td>
<td></td>
<td>3.77dB</td>
<td>1.9dB</td>
</tr>
<tr>
<td>AC Gain</td>
<td></td>
<td>22dB</td>
<td>15dB</td>
</tr>
<tr>
<td>Input 1dB compression level</td>
<td></td>
<td>-6.34dBm</td>
<td>-15.2dBm</td>
</tr>
<tr>
<td>**Reflection coefficient</td>
<td>$</td>
<td>s_{11}</td>
<td>$**</td>
</tr>
<tr>
<td>RF frequency</td>
<td></td>
<td>100MHz</td>
<td>900MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MIXER</th>
<th>This work</th>
<th>Zencir et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power dissipation</td>
<td></td>
<td>3.105mW</td>
<td>5.4mW</td>
</tr>
<tr>
<td>Noise figure</td>
<td></td>
<td>10.14dB</td>
<td>5.8dB</td>
</tr>
<tr>
<td>Voltage gain</td>
<td></td>
<td>20.4dB</td>
<td>20.8dB</td>
</tr>
<tr>
<td>Input 1dB compression level</td>
<td></td>
<td>-14.16dBm</td>
<td>-21dBm</td>
</tr>
<tr>
<td>RF frequency</td>
<td></td>
<td>100MHz</td>
<td>435MHz</td>
</tr>
</tbody>
</table>
Conclusion

- System satisfies most of initial project specifications
 - Bandwidth, power consumption, gain…

- Possible improvements:
 - Mixer noise figure, on-chip inductor design

- Introduction to CMOS RF design
Thank You!