## EECS413 Final Project <br> Group 7

## A CMOS LNA and Mixer for FM Receivers

Mao-Ter Chen, Wei-Ling Chiang, Yohan Kim

## Introduction

\% Continuous demand for high performance, low power RF circuits

* CMOS provides a favorable environment to integrate analog and digital on a single chip

$\because$ FM Band (88-108MHz)



## Design goals

## LNA:

* Input matching network (50』)
* Enough gain to overcome noise in later stages
* Low Power
* Linearity



## LNA- Choosing Topology


*Why 2 stage cascode common gate?

- Isolation from output to input and better power supply noise rejection
: Increase output impedance


## LNA-Input impedance



* In RF applications, impedance is usually $\mathbf{5 0} \Omega$ (matched to antenna)

$$
Z_{\text {in }}=\frac{s L}{s L\left(g_{\mathrm{m}}+\mathrm{s} C_{\mathrm{gs}}\right)+1}=50
$$

* Assume Cgs equals to 10pF,

$$
\begin{aligned}
& \omega_{0}^{2}=\frac{1}{L_{2} C_{g s}}=\frac{1}{10^{-11} \times L_{2}}=\left(2 \pi \times 100 \times 10^{6}\right)^{2} \\
& \Rightarrow L_{2}=253.3 n H \rightarrow \text { off }- \text { chip }
\end{aligned}
$$

## LNA - Gain



Too high: early mixer saturation and bad linearity

Too small: NF of whole system increase

* Ideally, $A_{v}=15 \square 20 \mathrm{~dB}$
© Our design: $A_{v}=g_{m} R_{1}=20 \log (0.022 \times 600)=22 d B$


## S-Parameter and stability




* For unconditional stability,



## Mixer-down conversion



* Simple switch as a mixer

* Implementation with NMOS

$$
\begin{aligned}
& V_{I F}(t)=K V_{R F}(t) V_{L O}(t)=K \cos 2 \pi f_{R F} t \cos 2 \pi f_{L O} t \\
& =\frac{K}{2}\left[\cos 2 \pi\left(f_{R F}-f_{L O}\right) t+\cos 2 \pi\left(f_{R F}+f_{L O}\right) t\right]
\end{aligned}
$$



## Mixer Topology


: Active double balanced mixer Gilbert Cell

* Rejection of LO coupling * Single-ended I/O port

* DC bias circuit
* Current mirror

R1 for output voltage level

## Input signal setting

*For RF input:

$$
V_{R F}=1 \mathrm{mV}
$$

*For LO input:
$V_{L O}=0 / 1.0 \mathrm{~V}$ (peak to peak)
: M1 and M2 are chosen long and wide transistors

* Switch transistors (M3~M6) are set appropriately



## Transient simulation and Spectrum



## System Performance - Noise figure



$$
N F_{\text {total }}=N F_{1}+\frac{N F_{2}-1}{G_{1}}+\frac{N F_{3}-1}{G_{1} G_{2}} \ldots+\frac{N F_{n}-1}{G_{1} G_{2} \ldots G_{n-1}}
$$

## System Performance - 1dB compression point


*LNA 1dB-compression level

*Mixer 1dB-compression level

## System Schematic and Layout




## Total specifications

| LNA | This work | Karanicolas, A.N. |
| :---: | :---: | :---: |
| Power dissipation | 3.9 mW | 20 mW |
| Noise figure | 3.77 dB | 1.9 dB |
| AC Gain | 22 dB | 15 dB |
| Input 1dB compression level | -6.34 dBm | -15.2 dBm |
| Reflection coefficient $\left\|\mathrm{s}_{11}\right\|$ | -27.7 dB | - |
| RF frequency | 100 MHz | 900 MHz |
| MIXER | This work | Zencir et al. |
| Power dissipation | 3.105 mW | 5.4 mW |
| Noise figure | 10.14 dB | 5.8 dB |
| Voltage gain | 20.4 dB | 20.8 dB |
| Input 1dB compression level | -14.16 dBm | -21 dBm |
| RF frequency | 100 MHz | 435 MHz |
|  |  |  |

## Conclusion

- System satisfies most of initial project specifications - Bandwidth, power consumption, gain...
- Possible improvements:
- Mixer noise figure, on-chip inductor design
- Introduction to CMOS RF design


## Thank You!

