A High Frequency CMOS Low Noise Amplifier Design for Cellular Applications

Hatim Bukhari, Joshua Duncan, and Jonathan Wilson EECS 413 – Professor Wentzloff December 3, 2007

Motivation for LNA

- LNAs offer good compromise between noise performance and high gain amplification
- Cellular technology (both basestation and handset) require LNAs to:
 - Increase connection range (for a given SNR)
 - Reduce dropped calls
 - Improve blocking performance
 - Improve call performance and connection quality
- Demand for size, cost, and complexity reductions motivate integration of LNA into CMOS technology

LNA System Block Diagram

- Design consists of:
 - Band-gap reference current source
 - Cascoded common source gain stage with input matching
 - Single input to differential output converter
- Operates in EGSM cellular band for uplink from handsets to basestation (880 – 915 MHz)

Band-gap Reference Current Source Operation

- Cascoded self-biasing network produces supply insensitive currents
- Differences in current densities across parasitic pnps produce gate bias voltage on M13 with tunable temperature coefficient
- Ratio of resistance of M12 and M9 cancels temperature dependence of output current

Current Source Performance

- Current source provides near temperature independence over all realistic temperatures
- Cascoded output mirroring provides higher output impedance for biasing networks and tail current

LNA Block Operation and Matching

- Cascoded NFETs provide:
 - Increased unilaterality for input/output isolation
 - Reduced Miller mulitplied
 C_{gd} , which increases unity
 gain frequency ω_t
- Input capacitor acts as dc blocking capacitor and is implemented off-chip

$$\omega_t = g_m/(C_{gs} + C_{gd})$$

Cascoding \rightarrow decreases $C_{qd} \rightarrow$ increases $\omega_t \rightarrow$ Decreases Noise Factor!

LNA Block Operation and Matching

- L2 and L3 used to match input impedance to 50Ω with:
 - $Z_{in} = \overline{sL_s + 1/(sC_{gs}) + (g_mL_s)/C_{gs}}$
- Drain inductor used to increase match bandwidth and filter output
- Width of NFETs were optimized for power constrained noise performance using:
 - $W_{opt} = 1/(3\omega LC_{ox}R_s)$

Noise Figure = 2.8dB Gain = 18.9dB

Single Input to Differential Output Converter Operation

- Composed of differential amplifier with LNA output applied to M1 and ac ground applied to M2
- A dc biasing network was designed to match the dc bias points of M1 and M2

 Cascoded mirror makes tail current source more ideal

Overall LNA System Layout

Layout Area: 0.2672 mm²

Overall LNA System Performance

LNA System Specifications

Specification	Value	Units
Power Consumption	25.74	mW
Max Gain in Passband (A_v)	34.55	dB
Gain Ripple over Passband	0.08	dB
Maximum System Noise Figure in Passband	4.366	dB
Maximum S ₁₁ in Passband	-11.61	dB
-10dB Bandwidth for S ₁₁	65.0	MHz
Maximum S ₁₂ in Passband	-57.97	dB
Current Source Output Temperature Variation	150.82	nA
System Differential Output Voltage Temperature Variation	14.768	mV
Overall Layout Area	0.2672	mm^2
DRC and LVS Clean Final Design	yes	n/a

Conclusions and Further Considerations

- CMOS LNA design meets all performance specs
 - LNA could find great use in cellular applications
- LNA system meets most 2σ process corner specs, but exceeds ±0.5dB gain ripple in the passband for a few corner sims
 - Unimportant since VGAs in baseband circuitry can adjust for the small variation
- Did not consider an output match for our system
 - Acceptable since most wireless receiver LNAs drive on-chip components such as a FET gate in a mixer stage, making a 50Ω output match superfluous

Acknowledgements

We would like to sincerely thank Professor Wentzloff and Danial Ehyaie for their patience, guidance, and enthusiasm over the course of this project and this semester.