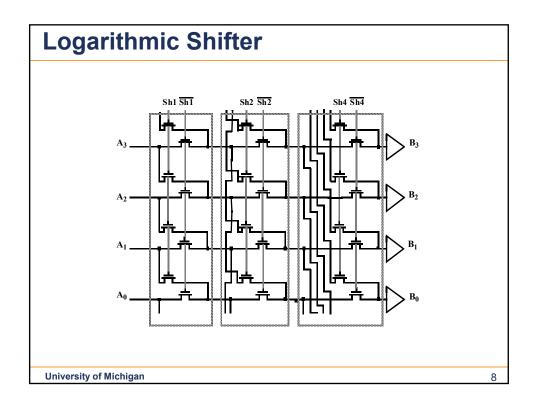
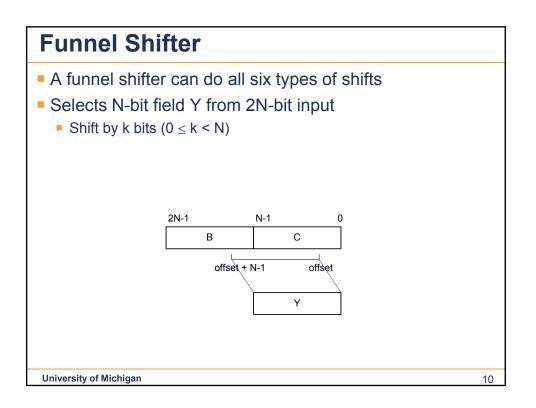
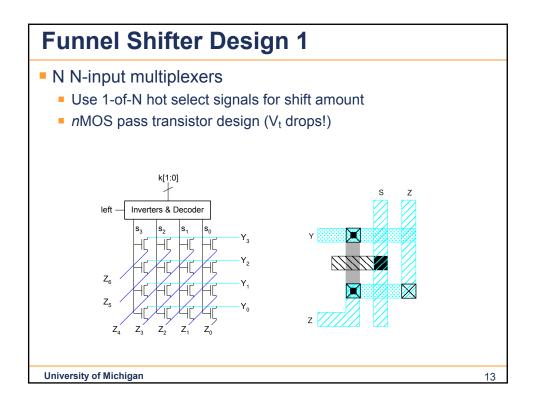
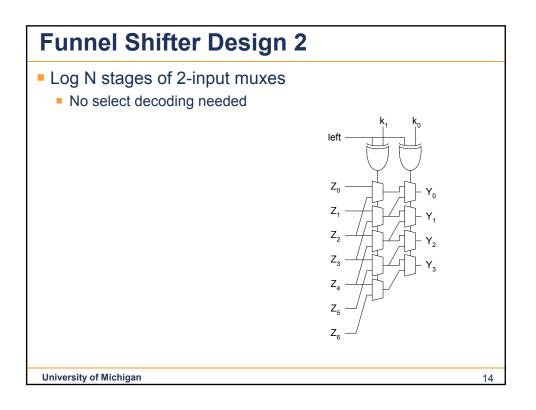

5



- Again, only use up to metal3 (metals 4, 5, and 6 saved for global routing and power grids)
- Bit-slice pitch/width should match up with RF and ALU
- DRC should be clean, including grid checks at top level (ignore grid label violations at lower levels of hierarchy)
- Start with speedpath (significant routing capacitance – estimate capacitance using tables from lecture)
- Finally, run Analog simulations with parasitics


University of Michigan




N N	h	hifter Comparison									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Ba	arrel		Logarithmic			
				Width	า	Speed			Width	Speed	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ν	к	2 N p	m	1 + N	diffs	p _m	(2 ^K +2K-1)	K + 2 diffs	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	3	16 p _n	n	1 +	8		13 p _m	3 + 2	
64 6 128 p _m 1 + 64 75 p _m 6 + 2 Barrel shifter needs an K x 2 ^K shift amount decoder Table 1: Optimal designs for each architecture and gate type arch and gate type order log transmission bigh 9 log statie low log statie log statie order order array pass transistor if array pass transistor if		16	4	32 p _n	n	1 +	16		23 p _m	4 + 2	
Barrel shifter needs an K x 2 ^K shift amount decoder Table 1: Optimal designs for each architecture and gate type arch and gate type log transmission bigh 1 9 2.55 23.0 log statie low - 7 5.05 40.0 log dynamic high - 11 0.65 73.2 23.0 array pass transistor - 11 3.35 39.0		32	5	64 p _n	n	1 + 3	32		41 p _m	5 + 2	
Table 1: Optimal designs for each architecture and gate type arch and gate type arch and gate type order buffers delay (ns) avg power (nw) power * delay log pass transition high 1 9 2.55 23.0 log transmission bigh 1 9 2.70 25.1 log static low - 7 5.05 46.0 log static high - 11 6.65 73.2 array pass transistor - - 11 3.55 39.0		64	6	128 p	m	1 +	64		75 p _m	6 + 2	
leg pass transistor high 1 9 2.55 23.0 log transmission bigh 1 9 2.79 25.1 log static low - 7 5.65 40.0 log dynamic high - 11 6.65 73.2 array pass transistor - - 11 3.55 39.0		В	1	able 1: Opt	imal c	lesigns fo	r cach a	rchite	cture and gate	type	
log transmission bigh 1 9 2.79 25.1 log static tex - 7 5.05 46.0 log dynamic high - 11 6.65 73.2 array pass transistor - - 11 3.55 39.0											
log static lew - 7 5.05 40.0 log dynamic high - 11 6.65 73.2 array pass transistor 11 3.55 39.0							and the second sec	11110-1110			
log dynamic high - 11 0.65 73.2 array pass transistor 11 3.55 39.0	- e			- X.	1.	9 9		MICLE 92			
			high				6.65	72.2			
1 292 1 49											
errev static - 10 4.50 48.0	array transmission		:		11		4.37 4.80	48.1			
rersity of Michigan [Acken, ISLPED'96]	ive				_			ISI F		1010 1010	

	B	С	Offset	
<mark>Shift Type</mark> Logical Right	00	$A_{N-1}A_0$	k	
Logical Left	$A_{N-1}A_0$	00	N-k	
Arithmetic Right	$A_{N-1}A_{N-1}$ (sign extension)	$A_{N-1}A_0$	k	
Arithmetic Left	$A_{N-1}A_0$	0	N-k	
Rotate Right	$A_{N-1}A_0$	$A_{N-1}A_0$	k	
Rotate Left	$A_{N-1}A_0$	$A_{N-1}A_0$	N-k	

Simplified Fun Optimize down to 21		
Table 10.11 Sir	nplified funnel shifter	
Shift Type	Ζ	Offset
Logical Right	$00, A_{N-1}A_0$	k
Logical Left	$A_{N-1}A_0, 00$	\overline{k}
Arithmetic Right	$A_{N\!-\!1}\!\ldots\!A_{N\!-\!1},A_{N\!-\!1}\!\ldots\!A_0$	k
Arithmetic Left	$A_{N-1}A_0, 00$	k
Rotate Right	$A_{N-2}\ldots A_0, A_{N-1}\ldots A_0$	k
Rotate Left	$A_{N-1}A_0, A_{N-1}A_1$	k

