
1

EECS 427
Discussion 6: Verilog HDL

Reading: Many references

EECS 427 F08 Discussion 6 1

Reading: Many references

Online Verilog Resources

• ASICs the book, Ch. 11:
http://www ge infn it/ pratolo/verilog/VerilogTutorial pdf– http://www.ge.infn.it/~pratolo/verilog/VerilogTutorial.pdf

• Verilog Quick Reference Guide:
– http://www.sutherland-hdl.com/on-line_ref_guide/vlog_ref_top.html

• Alternate Verilog FAQ:
– http://www.angelfire.com/in/verilogfaq/index.html

• Verilog Introduction
– http://www see ed ac uk/~gerard/Teach/Verilog/index html

EECS 427 F08 Discussion 6 2

http://www.see.ed.ac.uk/ gerard/Teach/Verilog/index.html
• Newsgroup:

– http://groups.google.com/groups?group=comp.lang.verilog

2

Topic Outline

Introduction

Verilog Background

ConnectionsConnections

Modules

Procedures

Structural

Behavioral

EECS 427 F08 Discussion 6 3

Behavioral

Testbenches

Simulation

Most slides courtesy of Andrew Kahng, UCSD

Lecture Overview

Learn Verilog basics
Hardware Description Language semantics
Verilog SyntaxVerilog Syntax
Features

Behavioral vs. structural Verilog

Synthesizable Verilog (subset of Verilog itself)

A few small examples

EECS 427 F08 Discussion 6 4

A Synth + APR tutorial will be made available on the
course website

3

High-level view of Verilog

Verilog descriptions look like programs:

C/C++ Verilog
Function Module

Modules resemble subroutines in that you can write one description
and use (instantiate) it in multiple places

Block structure is a key principle

Function Module
Procedure
Parameters

Ports

Variables Wires/Regs

EECS 427 F08 Discussion 6 5

oc st uctu e s a ey p c p e
Use hierarchy/modularity to manage complexity

But they aren’t ‘normal’ programs
Module evaluation is concurrent (every block has its own “program
counter”)

Introduction - Motivation

Generic HDL uses:
Simulation

- Test without build
- ModelSim, NCVerilog, VCS, etc.

Synthesis (build)
- Real hardware (gates)
- Design Compiler

EECS 427 F08 Discussion 6 6

4

Quick Verilog History

Verilog HDL (Hardware Description Language) was
developed by Gateway Design Automation in 83-84

Put in the public domain by Cadence Design Systems inPut in the public domain by Cadence Design Systems in
1990 to promote the language as a standard

Became an IEEE standard in 1995

EECS 427 F08 Discussion 6 7

Hardware Description Languages

Need a description one level up from logic gates

Work at the level of functional blocks, not logic gates
C l i f h f i l bl k i h d iComplexity of the functional blocks is up to the designer
A functional unit could be an adder, or even a microprocessor

The description consists of functional blocks and their
interconnections

Describe functional block (not predefined)
Support hierarchical description (function block nesting)

EECS 427 F08 Discussion 6 8

To make sure the specification is correct, create a
testbench and run it through NCVerilog (or similar)

Slide courtesy of Ken Yang, UCLA

5

Verilog Naming Conventions

The following is used in all code:
Two slashes “//” are used to begin single line comments

- However “// synopsys” is a directive to Design Compiler to do y p y g p
something (we’ll show the most common example later)

A slash and asterisk “/*” are used to begin a multiple line
comment and an asterisk and slash “*/” are used to end a
multiple line comment.
Names can use alphanumeric characters, the underscore “_”
character, and the dollar “$” character
Names must begin with an alphabetic letter or the underscore.

EECS 427 F08 Discussion 6 9

Spaces are not allowed within names

Parameter naming; use compiler directives
‘define word_size 16

Whenever you see ‘word_size this will be interpreted as 16

Reserved Keywords
The following is a list of the Verilog reserved keywords:

always endmodule medium reg tranif0
and endprimitive module release tranif1
assign endspecify nand repeat tri
tt ib t dt bl d t i0attribute endtable negedge rnmos tri0
begin endtask nmos rpmos tri1
buf event nor rtran triand
bufif0 for not rtranif0 trior
bufif1 force notif0 rtranif1 trireg
case forever notif1 scalared unsigned
casex fork or signed vectored
casez function output small wait

EECS 427 F08 Discussion 6 10

p
cmos highz0 parameter specify wand

6

Reserved Keywords (continued)

deassign highz1pmos param spec weak0

default if posedge strength weak1

defparam ifnone primitive strong0 while

disable initial pull0 strong1 wire

edge inout pull1 supply0 wor

else input pulldown supply1 xnor

end integer pullup table xor

endattribute join remos task

endcase large real time

EECS 427 F08 Discussion 6 11

endfunction macromodule realtime tran

Numbers
Number notation:

<size> ‘ <base format><number>

Examples:
//4’b1111 // 4 bit binary number

12’habc //12 bit hexadecimal number

16’d255 //16 bit decimal number

Z is high impedance, X is don’t care, ? = 0 or 1 or X

EECS 427 F08 Discussion 6 12

7

Operators
Arithmetic

* multiply

/ divide

+ add

subtract

Equality
== equal

!= not equal

=== (case equality)- subtract

% modulus

Logical
! Not

&& and

|| or

Relational

(q y)

Bitwise
~ negation

& and

\ or

^ xor

^~ xnor

EECS 427 F08 Discussion 6 13

Relational
> greater

< less

>= greater-equal

<= less-equal (also used for
non-blocking assignments, later)

Conditional
? : if then else

Bit munging
{ } Concatenation
[] Bit slicing

Connections: Ports

Keywords:
input - input
output - outputp p
inout - bi-directional

Ports do not store information

Example
module ex (a, b, c, out)

output out;

EECS 427 F08 Discussion 6 14

p

input a, b, c;

endmodule

8

Wires

Wires
Connection between hardware elements (visualize as a node in
the circuit)
Module connections
Used to connect signals from sensitivity list
Memoryless

- Must be continuously driven by an assignment statement (assign)
Assigned outside of always blocks

Example:

EECS 427 F08 Discussion 6 15

Example:
wire a; // declared wire net

wire b = 1’b0 // tied to zero at declaration

(alternatively: wire b;

assign b = 1’b0;

Memory Elements

Register
Keyword = reg
Represents storage in that its value is whatever was most p g
recently (procedurally) assigned to it

- But it does NOT necessarily instantiate an actual register
Assigned within always blocks

Examples:
reg clock; // clock

reg [0:4] vec reg // 5 bit register vector

EECS 427 F08 Discussion 6 16

reg [0:4] vec_reg // 5 bit register vector

9

Modules

Primary unit in Verilog
Functional block (can be big; ex: ALU)
Keywords = module/ endmoduley
Used for all dataflow types

EECS 427 F08 Discussion 6 17

Procedural Statements
Control statements

Keyword always provides functionality of a tiny program that executes repeatedly
(usually on some trigger condition, more later)
Don’t assign a value to a specific reg in two different always blocks as it will
generate 2 FFs and combine outputs

Inside an always block, can use standard control flow statements:y ,
if (<conditional>) then <statements> else <statements>;
case (<var>) <value>: <statements>; … default:
<statements>

Case statements are prioritized
- The second case entry can’t happen unless the first does not match
- May not be what the actual hardware implies – especially when cases are

mutually exclusive
- Need additional directives (parallel-case, shown later) to indicate this

EECS 427 F08 Discussion 6 18

(p ,)

Example:
always @ (Activation List)

begin
if (x==y) then
out= in1
else
out = in2;

end

10

Initial Block

A type of procedural block
Does not need an activation list
It runs just once, when the simulation startsj ,

Used at the very start of simulation
Initialize simulation environment
Initialize design

- This is usually only used in the first pass of writing a design
- NOT synthesizable, real hardware does not have initial blocks

Allows testing of a design (outside of the design module)

EECS 427 F08 Discussion 6 19

Allows testing of a design (outside of the design module)

Blocking vs Non-blocking
Relates to scheduling of events

Blocking
Ex:
begin

A = B;

B = A;

end

Each assignment is completed before moving to the next line
In this case, value held in B is assigned to A, and then the value
assigned in A (same as in B) is then assigned back to B.

Non-blocking (preferable in sequential elements)

EECS 427 F08 Discussion 6 20

Ex:
begin

A <= B;

B <= A;

end

Values on RHS of both expressions are held in temp locations, all
assignments are done concurrently A and B are swapped

11

Modules

Structure

Module Name:

Dataflow:
Assign statement

Variables:
Wires, regs.

Module Name:
Port list, port declaration
Parameters.

EECS 427 F08 Discussion 6 21

Blocks:
Initial, always.

Structural Verilog
Structural models

Are built from gate primitives and/or other modules
They describe the circuit using logic gates — much as you
would see in an implementation of a circuit
Basically you are clearly specifying the structure of the circuit

Identify:
Gate instances, wire names, delay from a or b to f.

module mux (f, a, b, sel);
output f;
input a, b, sel;

a

EECS 427 F08 Discussion 6 22

and #5 g1 (f1, a, nsel),
g2 (f2, b, sel);

or #5 g3 (f, f1, f2);
not g4 (nsel, sel);

endmodule

b
f

sel

12

Behavioral Modeling

More abstract, no direct description of how a module is
implemented using primitives

Mux using behavioral: assign f = (sel) ? a: b;

Procedural statements are used
Statements using “always” Verilog construct
Can specify both combinational and sequential circuits

Normally don’t think of procedural stuff as “logic”

EECS 427 F08 Discussion 6 23

They look like C: mix of ifs, case statements, assignments …
… but there is a semantic interpretation to put on them to allow
them to be used for simulation and synthesis (giving equivalent
results)

Slide courtesy of Don Thomas, Carnegie Mellon

Behavioral Statements

if-then-else
What you would expect, except that it’s
doing 4-valued logic. 1 is interpreted as
True; 0, x, and z are interpreted as False

if (select == 1)
f = in1;

else f = in0;

case
What you would expect, except for 4-
valued logic
There is no break statement — it is
assumed
Casex statement treats Z/X as don’t
cares

case (select)
2’b00: a = b + c;
2’b01: q = r + s;
2’bx1: r = 5;
default: r = 0;

EECS 427 F08 Discussion 6 24

cares default: r = 0;
endcase

Slide courtesy of Don Thomas, Carnegie Mellon

13

Activation Lists

Contained in always block

Definition: Activation List
Tells the simulator when to run this block

- NOTE!! If not all inputs are sensitized, a latch is created to hold
state in those undefined cases

Activation lists in Verilog:
@(signalName or signalName or …)

- Evaluate this block when any of the named signals change
(either positive or negative change)

@(posedge signalName);or @(negedge

EECS 427 F08 Discussion 6 25

@(posedge signalName);or @(negedge
signalName);

- Makes an edge triggered flip-flop
- Evaluates only on one edge of a signal
- Can have @(posedge signal1 or negedge signal2)
- Only allow “or” not “and” because edges are singular events

Testbenches: Delay Models

Verilog simulation time
Execution time of the verilog model

- When the computer completes with all the “events” that occur at the
current simulated time

- The computer increases time until another signal is scheduled to
change values

Behavioral delay assignments within the blocks
delayAmount

- Simulator sees this symbol, and stops evaluation
- Pause delayAmount of simulated time (# of ticks)

EECS 427 F08 Discussion 6 26

- Delays are often used to model the delay in functional units
- Can be tricky to use properly

Synthesis does not deal with delays (it computes delays itself)
- Use only in testbench
- Synthesizer will ignore

14

Declarative Delay Control

A way to specifying delay of a signal

Make out a delayed version of the input (by 10 ticks)
assign #10 out = in;
Delayed assignment

Anywhere else to put delay is not allowed
assign out = #10 in; // is not allowed

10 ticks

EECS 427 F08 Discussion 6 27

in

out

Slide courtesy of Ken Yang, UCLA

Building and testing a module
Construct a “testbench” for your design

Develop your hierarchical system within a module that has input
and output ports (called “design” here)
Develop a separate module to generate tests for the module
(“t t”)(“test”)
Connect these together within another module (“testbench”)

module design (a, b, c);
input a, b;
output c;
…

d l t t ()

module testbench ();
wire l, m, n;

design d (l, m, n);
test t (l, m);

EECS 427 F08 Discussion 6 28

module test (q, r);
output q, r;

initial begin
//drive the outputs with signals
…

test t (l, m);

initial begin
//monitor and display
…

Slide courtesy of Don Thomas, Carnegie Mellon

15

Examples: Creating Code

Example:
Given a specification – “build full adder”
Name signals:g

- Inputs: carry_in, A, B
- Outputs: carry_out, sum

Math:
- Sum = (A xor B xor carry_in)
- Carry_out = (A · B) + carry_in · (A · B)

Need:

EECS 427 F08 Discussion 6 29

- Module name
- Algorithm (see math)

Full-adder Code

Sample Code

module full_adder (a, b, ci, sum, co); // lists full
/

Sensitivity List

input/output signal list

input a, b, ci; //input declaration

output sum, co; //output declaration

assign sum = a ^ b ^ ci;

assign co = (a & b) | (a & ci) | (b & ci);

endmodule

EECS 427 F08 Discussion 6 30

16

Positive edge-triggered registers with resets

module ff1(d,clk,reset,q)
input d, clk, reset;
output q;
reg qreg q;

always @(posedge clk)
if (reset == 1)

q <= 0;
else

q <= d; OR

EECS 427 F08 Discussion 6 31

always @(posedge clk or posedge reset)
if (reset) q <= 0;
else

q <= d;

endmodule

