
EECS 427 Fall 2008

Page 1 of 8

EECS 427 RISC PROCESSOR
 ISA for EECS 427 Processor

 ImmHi/
OP Code Ext

ImmLo/
Rsrc OP Code Rdest

Mnemonic Operands 15-12 11-8 7-4 3-0 Notes (* is Baseline)

ADD Rsrc, Rdest 0000 Rdest 0101 Rsrc *

ADDI Imm, Rdest 0101 Rdest ImmHi ImmLo * Sign extended Imm

ADDU Rsrc, Rdest 0000 Rdest 0110 Rsrc

ADDUI Imm, Rdest 0110 Rdest ImmHi ImmLo Sign extended Imm

ADDC Rsrc, Rdest 0000 Rdest 0111 Rsrc

ADDCI Imm, Rdest 0111 Rdest ImmHi ImmLo Sign extended Imm

MUL Rsrc, Rdest 0000 Rdest 1110 Rsrc

MULI Imm, Rdest 1110 Rdest ImmHi ImmLo Sign extended Imm

SUB Rsrc, Rdest 0000 Rdest 1001 Rsrc *

SUBI Imm, Rdest 1001 Rdest ImmHi ImmLo * Sign extended Imm

SUBC Rsrc, Rdest 0000 Rdest 1010 Rsrc

SUBCI Imm, Rdest 1010 Rdest ImmHi ImmLo Sign extended Imm

CMP Rsrc, Rdest 0000 Rdest 1011 Rsrc *

CMPI Imm, Rdest 1011 Rdest ImmHi ImmLo * Sign extended Imm

AND Rsrc, Rdest 0000 Rdest 0001 Rsrc *

ANDI Imm, Rdest 0001 Rdest ImmHi ImmLo * Zero extended Imm

OR Rsrc, Rdest 0000 Rdest 0010 Rsrc * NOP=OR R0, R0

ORI Imm, Rdest 0010 Rdest ImmHi ImmLo * Zero extended Imm

XOR Rsrc, Rdest 0000 Rdest 0011 Rsrc *

XORI Imm, Rdest 0011 Rdest ImmHi ImmLo * Zero extended Imm

MOV Rsrc, Rdest 0000 Rdest 1101 Rsrc *

MOVI Imm, Rdest 1101 Rdest ImmHi ImmLo * Zero extended Imm

LSH Ramount, Rdest 1000 Rdest 0100 Ramount * -15 to 15 (2s compl)

LSHI Imm, Rdest 1000 Rdest 000s ImmLo * s = sign (0=left, 2s comp)

EECS 427 Fall 2008

Page 2 of 8

ASHU Ramount, Rdest 1000 Rdest 0110 Ramount -15 to 15 (2s comp)

ASHUI Imm, Rdest 1000 Rdest 001s ImmLo s = sign (0=left, 2s comp)

LUI Imm, Rdest 1111 Rdest ImmHi ImmLo * Load & 8 bit Left Shift

LOAD Rdest, Raddr 0100 Rdest 0000 Raddr *

STOR Rsrc, Raddr 0100 Rsrc 0100 Raddr *

SNXB Rsrc, Rdest 0100 Rdest 0010 Rsrc

ZRXB Rsrc, Rdest 0100 Rdest 0110 Rsrc

Scond Rdest 0100 Rdest 1101 cond

Bcond disp 1100 cond DispHi DispLo * 2s comp displacement

Jcond Rtarget 0100 cond 1100 Rtarget *

JAL Rlink, Rtarget 0100 Rlink 1000 Rtarget *

TBIT Roffset, Rsrc 0100 Rsrc 1010 Roffset Offset = 0 to 15

TBITI Imm, Rsrc 0100 Rsrc 1110 Offset Offset = 0 to 15

LPR Rsrc, Rproc 0100 Rsrc 0001 Rproc

SPR Rproc, Rdest 0100 Rproc 0101 Rdest

DI 0100 0000 0011 0000

EI 0100 0000 0111 0000

EXCP vector 0100 0000 1011 vector

RETX 0100 0000 1001 0000

WAIT 0000 0000 0000 0000

Unused OP code 0000 0100

Unused OP code 0000 1000

Unused OP code 0000 1100

Unused OP code 0000 1111

Unused OP code 0100 1111

Unused OP code 1000 0101

Unused OP code 1000 0111

Unused OP code 1000 1xxx

EECS 427 Fall 2008

Page 3 of 8

ISA for EECS 427 Processor
Opcodes, Extended Opcodes and Condition Codes

OP Code

Bits 13,12
15,14 00 01 10 11

00 Register ANDI ORI XORI
01 Special ADDI ADDUI ADDCI
10 Shift SUBI SUBCI CMPI
11 Bcond MOVI MULI LUI

Register

Bits 5,4
7,6 00 01 10 11
00 WAIT AND OR XOR
01 ADD ADDU ADDC
10 SUB SUBC CMP
11 MOV MUL

Special

Bits 5,4
7,6 00 01 10 11
00 LOAD LPR SNXB DI
01 STOR SPR ZRXB EI
10 JAL RETX TBIT EXCP
11 Jcond Scond TBITI

Shift
Bits 5,4
7,6 00 01 10 11
00 LSHI LSHI ASHUI ASHUI
01 LSH ASHU
10
11

Cond

Bits 9,8/1,0
11,10/3,2 00 01 10 11

00 EQ NE CS CC
01 HI LS GT LE
10 FS FC LO HS
11 LT GE UC

Blank entries are unused codes.

Bold instructions are NOT in the baseline.

EECS 427 Fall 2008

Page 4 of 8

EECS 427 RISC Processor

The group projects for EECS 427 will be based on the processor specification given in this
document. The processor specification is based on RISC concepts and is implemented as a two
stage pipeline. It uses a 16 bit word and address space, although for simplicity, each address
refers to a complete word (two bytes), so the address space is 217 bytes. All instructions are
single word. Following the RISC approach, almost all instructions refer to a 16 entry register file.
The highest nybble is the operation code, the next nybble is usually the destination register
address, the remaining byte is an immediate data value for some instructions, or is split into a
four bit operation code extension and a four bit source register address for other instructions. (A
few instructions are different, so read the specifications carefully.) In order to make the project
feasible for most groups in the available time, a “baseline” implementation is also given. This
uses a selected subset of the instructions and the expectation is that implementation of the
baseline processor is the minimum requirement for this course. In addition, each group will
design a circuit-level customization around the baseline. This may involve adding a few
instructions beyond the baseline, adding special registers that allow certain operations to be done
more efficiently, or adding interface logic to external input/output devices. (Note: most projects
are usually much closer to the baseline than the full implementation.) All the baseline
instructions should be implemented exactly, so that your processor can execute a test program at
the end of the term. Added instructions should normally use the “Unused OP Codes” which are
listed in the Instruction Set Architecture (ISA). If it is necessary to replace some of the full
implementation instructions (beyond the baseline), discuss it with the instructor.

A block diagram is given for the baseline processor architecture and each group should
implement this structure. Any proposed changes to the architecture must first be cleared by the
instructor. The following sections discuss the functions of the instructions. You should also refer
to the notes in the list of instructions.

Notes on the Baseline Instruction Set
All ALU instructions (except CMP, CMPI - see below) write the result back to the destination
register. Instructions ending with I are immediate and use the eight least-significant bits of the
instruction as data, the others are direct, (i.e. instruction “op Rsrc/Imm, Rdest” performs

Rdest <-- Rdest op Imm (sign extended)
or

Rdest <-- Rdest op Rsrc
respectively).

For the baseline EECS 427 processor, the instructions marked with an asterisk in the instruction
table should be implemented. Successive memory addresses can refer to 16 bit words instead of
bytes. Of the baseline subset of instructions, the only ones which can change the program status
register (PSR) are the arithmetic instructions ADD, ADDI, SUB,SUBI, CMP, CMPI. CMP and
CMPI perform the same operations as SUB, SUBI but affect different PSR flags (see below) and
do not write back the result. Only flags FLCNZ are needed for the baseline implementation.

EECS 427 Fall 2008

Page 5 of 8

• ADD, ADDI, SUB,SUBI set the C flag if a carry/borrow from the most significant bit
position occurs when the operands are treated as unsigned numbers, and set the F flag if an
overflow occurs when the operands are treated as two’s complement numbers. (Note: the
processor does not know which interpretation you are using, so must set both flags
appropriately for each operation.) CMP, CMPI perform a subtraction without write back to
Rdest and set the Z flag if the result is zero, set the L flag if Rsrc/Imm > Rdest when the
operands are treated as unsigned numbers (i.e. when a carry/borrow occurs), and set the N
flag if Rsrc/Imm > Rdest when the operands are treated as two’s complement numbers (N
can be computed as the exclusive-or of L and the sign bits of Rsrc/ Imm and Rdest). All other
baseline instructions leave the flags unchanged.

• Jcond, Bcond are absolute and relative jumps respectively based on the condition codes
specified in the condition code (cond) table. (See Table 1.)

• JAL (jump and link) stores the address of the next instruction in Rlink, and jumps to Rtarget.
Its main use is for subroutine calls. Return with a JUC Rlink (where Rlink is the same
register used to store the link).

• LSH is a logical left shift by the number of bits specified in Rsrc/Imm treated as a signed
twos complement number (which must be in the range -15 to +15). A negative left shift is
effectively a right shift.

• LOAD loads data from memory address Raddr to register location Rdest and STOR stores
data located in register Rsrc to data memory address Raddr. The NOP instruction is really
OR r0, r0 and does not need to be implemented separately. Unconditional jumps (JUMP) and
branches (BR) are equivalent to JUC and BUC respectively, so do not need separate
implementation either. Compilers may have these alternative instruction ops for convenience,
however.

• LUI (load upper immediate) loads the 8 bit immediate data into the upper (most significant)
bits of the destination register.

• MOV copies the source register or immediate into the destination register.

Notes on the Additional Instructions
In a full implementation, PSR (program status register) is a dedicated 16 bit register with flag
entries (in the following order, MSB at the left) rrrrIPE0NZF00LTC, where the “r” entries are
reserved, the “0” entries are zeros, I, E are used for interrupt processing, T, P are for program
tracing (debugging), and the rest are flags have been defined elsewhere.

• ADDU does the same as ADD but does not affect the PSR flags.

• ADDC does the same as ADD except the C flag is also added in. It affects the same flags.

• ASHU does an arithmetic left shift interpreting both operands as signed twos complement.

• MUL multiplies: Rdest <-- Rsrc/Imm * Rdest. High order bits are truncated if they do not fit
in Rdest. No flags are affected.

EECS 427 Fall 2008

Page 6 of 8

• SUBC does the same as SUB except that the C flag is also subtracted. It affects the same
flags.

• SNXB converts the 8-bit operand in Rsrc to 16 bits in Rdest with sign-extension.

• Scond sets Rdest = 1 if the condition is true (i.e. if the bit in the PSR is set), and resets Rdest
= 0 if it is false (same condition codes as jump and branch instructions).

• DI, EI, EXCP, RETX deal with interrupts and exceptions. Ask if you are interested in
implementing any of them.

• LPR, SPR load the PSR from Rsrc and store PSR into Rdest, respectively.

• TBIT copies the bit in position offset to the F flag of the PSR.

• WAIT suspends program execution until an interrupt occurs (or forever, if interrupts are not
implemented).

• ZRXB converts the 8-bit operand in Rsrc to 16 bits in Rdest with zeros-extension.

EECS 427 Fall 2008

Page 7 of 8

Table 1: COND Values for Jcond, Bcond, and Scond

Mnemonic Bit Pattern Description PSR Values

EQ 0000 Equal Z=1

NE 0001 Not Equal Z=0

GE 1101 Greater than or Equal N=1 or Z=1

CS 0010 Carry Set C=1

CC 0011 Carry Clear C=0

HI 0100 Higher than L=1

LS 0101 Lower than or Same as L=0

LO 1010 Lower than L=0 and Z=0

HS 1011 Higher than or Same as L=1 or Z=1

GT 0110 Greater than N=1

LE 0111 Less than or Equal N=0

FS 1000 Flag Set F=1

FC 1001 Flag Clear F=0

LT 1100 Less than N=0 and Z=0

UC 1110 Unconditional N/A

 1111 Never Jump N/A

EECS 427 Fall 2008

Page 8 of 8

Baseline RISC Architecture

