EECS427 Fall 2008

Synthesis and APR Tools Tutorial

(Last updated: Oct. 26, 2008)

Introduction
This tutorial will get you familiarized with the design flow of synthesizing and place and routing a

Verilog module. All the files needed to synthesize this module will be given to you for the purposes of
this tutorial, but you will have to supply or modify the files in order to run your own modules in the

future.

First, you will need to synthesize a behavioral Verilog module to generate a synthesized Verilog netlist
using Design Compiler. Then you will have to auto place and route the synthesized Verilog into layout
and finally import the auto placed and routed layout into Cadence and run DRC and LVS. For the

purpose of this tutorial, you will be building a multiplier.

The Example Design

Before you start, please first make sure that you remove the .synopsys_dc.setup file from your home
directory from any previous course, so it doesn’t interfere with you EECS427 project. The example
design for this tutorial is an 8x8 bit multiplier, which can be located in the following directory:

/afs/umich.edu/class/eecs427/ibm13/synth_tutorial
Please copy this directory over to your personal eecs427 space.

% cd /afs/umich.edu/class/eecs427/ibm13

% cp —r synth_tutorial ../fO7/<unique name>/cad6/.

Synthesis (Design Compiler dc_shell)

The synthesis process is controlled by a script file that the Synopsys tool dc_shell reads. The newest

version of dc_shell uses the TCL script language

For documentation, run the command sold (Synopsys Online Documentation). You should, at the very

least, look up each command in the synthesis scripts.

To run dc_shell you must invoke the TCL mode of the tool. It is also very helpful to store the verbose

output of the program into a log file.

% dc_shell —-xg_mode —tcl_mode —f <yourscript.tcl> | tee <log_file>

EECS427 Fall 2008

For this tutorial’s purposes, the TCL file is located at: synth_tutorial/tcl/mult.tcl. You must run that
command while in the TCL folder for the pointers within the TCL file to work. Please examine the TCL

file and try and understand what is going on.

% cd synth_tutorial/tcl

% dc_shell -xg_mode —tcl_mode —f mult.tcl | tee mult.dc.log

It is a good practice to use a “Makefile” to execute complex unix commands, and there is one create
for you in this tutorial. Type the following command in the synth_tutorial/tcl directory, which will do
the same thing as the previous command.

% make synth_mult

The Tcl Files

Now that you have seen that the script actually works, it might be a good idea to take a look at all
the .tcl files.
mult.tel: the main tcl script which calls all other scripts.
common.tcl: the common tcl script that sets up the standard cell library and search path
location.

timing.tcl: the tcl script that set the clock period and input and output delay.

The Output Files

The main output file, located at synth_tutorial/verilog/mult.nl.v, is the synthesized Verilog netlist file
which contains a gate-level (structural) netlist made up of standard library cells. From this point on the
netlist is both process dependent and technology dependent (remember that, in contrast, behavioral
Verilog files are typically process independent). The Synopsys synthesis program also creates a log
file and a report file. The log file is located in the synth_tutorial/tcl directory and is named
mult.dc.log. The log file tracks the progress of the tcl script. After each run, you should first check to
see if any command gives you an error message. The report file can be found in
synth_tutorial/tcl/mult.dc.rpt. The report file gives you a summary of the quality of the synthesized
netlist. It reports parameters such as area, power, and timing, which might be essential to your design.
Another file of interest is the sdf file which gives you a more accurate model of the delay for verilog
simulations. The sdf file can be found in synth_tutorial/sdf/mult.dc.sdf. The post-synthesis sdf gives
you a better idea of the delay of your design but is not always accurate since it is only based on the
gate-level netlist (there is no physical routing in the synthesized netlist). The post-APR sdf is much

more accurate because it contains parasitics due to interconnect.

EECS427 Fall 2008

Automatic Place & Route (APR)

The main tool for placement and routing is Encounter. While this tool does have a graphical interface,
it also has a textual, command line driven interface found in the same terminal you run Encounter
from. The graphical interface merely presents forms for you to enter in the needed information which
is then printed out as commands. Thus, by looking at the log file the tool generates, you can quickly

learn the commands you need to script the tool.

TCL Script

The TCL script sets different parameters for floorplanning, cell placement, power routing, clock
generation, and 1/O pins. Change the parameters as you see fit especially for the floorplan and the
power stripes. For the purpose of this tutorial, the TCL file is provided at:

synth_tutorial/encounter/mult.tcl

Configuration File

The configuration file specifies the technology file locations. The files required by Encounter are the
*lef, *.lib, and *.v. The LEF file contains metal information of the standard cells used for routing. The
LIB file has timing information for placement and clock distribution network generation. The gate-level
netlist with a “.v”file extension has the connectivity information (this will be a previously synthesized,
or custom structural netlist, e.g., the synth_tutorial/verilog/mult.nl.v created earlier). For the
purpose of this tutorial, the configuration file is provided at:

synth_tutorial/encounter/mult.conf

Pin Placement

In addition, you will need to create a pin-placement constraint file. By looking at the floorplan diagram,
you have to decide the pin placement such that the congestion is minimized during global routing.
There are two ways to create this file. One is to create them by hand and the other way is to create
them using the “Pin Editor” under “Edit”. One thing to note is that encounter is a grid-based router, so
any pins that are not on grid will not be routed. For the purpose of this tutorial, the pin I/O file is
provided at:

synth_tutorial/encounter/mult.save.io

Timing Constraint
The file, “mult.sdc” creates the clock for the encounter tool. Make sure that the clock period and

uncertainty match those in the synthesis script.

Running Encounter:
You can run Encounter in graphical mode until you become familiar with the tool and automate the

EECS427 Fall 2008

scripts to run in text mode.
Here is how you would invoke the executable:
% cd /afs/umich.edu/class/eecs427/f08/<unique name>/cad6/synth_tutorial/encounter

% encounter

Do not run Encounter with a “&” to run it in background mode because the current terminal will be
used for entering the commands. If you accidentally run it in the background, you can bring the

process to the foreground with the “fg” command.

For future CADs, do not forget to edit the *.conf file to change the pathname to your own files. You
may also have to change the aspect ratio, the size of your floorplan, the number of power stripes, etc.
in order to get a compact layout. Most likely you have to hit View 2Redraw (hotkey ctrl+R) to see
updated results of the commands you run. For the purposes of this tutorial, we will simply execute the
files that have been provided with the following command while in synth_tutorial/encounter/ :

% cd /afs/umich.edu/class/eecs427/f08/<unique name>/cad6/synth_tutorial/encounter

% encounter —init mult.tcl

Once everything is working, you should get several output files. The main files of interest are *.apr.sdf,
*.def (which will be in: synth_tutorial/def), and *.apr.v (which will be in: synth_tutorial/verilog). The
*.apr.sdf is an extracted timing file that lets you back annotate the parasitic for your Verilog
simulations. Most of you should have noticed that the SDF file generated by Design Compiler has no
information about wire delays and all the delay values corresponding to the wires is zero. Note that
your placed design could be different from the synthesized structural netlist because of the insertion of
clock tree. Hence it is important to verify the functionally of the Verilog file generated by Encounter

with proper back-annotation of the corresponding sdf file.

The above command should simply run Encounter with the given mult.tcl, which calls mult.conf and
mult.save.io. If all is successful, you should end with an “encounter > prompt. Just enter “win” at the
prompt and the graphical interface should show up with the placed and routed layout of the multiply

module.

For reference, Encounter is a Cadence software so in order to get the manual, you need to run
% /usr/caen/ic-5.141_usr4/share/bin/cdsdoc &

to pull up the manual. To get access to all the cadence software that is used in EECS427, please copy

the .cdsdoc_path file in the ibm13/setup directory to your home directory.

EECS427 Fall 2008

Importing Layout (Cadence)

Open ICFB and create a new cadence library called “mult” in cad6 using the instructions from Tutorial

1. Don'’t forget to attach it to the cmr8sf technology library as you have for your previous libraries.

On the CIW (Command Window), click File 2Import->Stream. The window shown below in Figure 1

will open up. Fill in the form as shown (also fill in the user-defined data and options sub-forms).

[Error Message File

X stream In User-Defined Data

OK | Cancel Defaults Apply

Cell Name Map Table
Layer Map Table

Text Font Map Tabiz

Restore Fin Attribule

User-Defined Property Mapping File

User-Defined Property Separator
User-Defined SKILL File

Input File:

—1ox

Help

q;. 1.5LM/cdslib/emrfBaf /gdslods. MEI

a

Retain Reference Library (No MED

Do Not Overwrite Existing Cell
Filter Out i

g/Information 1]

Filter Out Unmapping Waming

Hierarchy Depth Limit |32

Maximum Vertices in Path/Polygon 1024
Rod Directory

Reference Library Order
Keep Stream Cells

Attach Techfile Of Library

Comprehensive Loa

Figure 1: Stream in Forms.

X Virtuoso® Stream In —a _% Stream In Options - 0O X
OK | Cancel | Defaults| Apply Help OK | Cancel Defaults Apply Help
user-Defined Data And Options Set Fast Opuons Report Bad Polygons T
Templale File Load Save Browsé .| | Snap XY to Grid Resolution
Hun Directory A Convert Array to Simple Mosaic]
Input Fle Browse ... Skip Undefined Layer-Purpose Pair
Top Cell Name @ Convert Zero Width Paths to ¥ lines ignore
Output 4 Opus DB . ASCIl Dump . - Techfile Case Sensitivily 4 preserve . upper . lower
Library Name (Imult-) Convert Nodes to dots 4 ignore
ASCQI Technology File Naine I BOWSE ... Keep PCell
Scale UU/DBLU 0. 00100006, :@
AL W mioron e/ mime tet S il Merge Undefine Purpose to drawing
Process Hice Value 0-20 D Precision Report
PIPD.LOG Browse Ignore BOX Record

/afs/umich.edu/class/eecs427/w08/<unique name>/cad6/synth_tutorial/gds2/mult.gds2

Layer Map Table:

/afs/umich.edu/class/eecs427/ibm13/cmrf8sf/relLM/cdslib/cmrf8sf/gds2cds.map

Then Click OK.

You will see a pop-up message at the end of the process.

Next, you need to add the GRLOGIC box around the whole design before the DRC check. Finally,

X STRMIN PopUp Message

PIPO0 STEMIN (PID = ipc:
P There were 0 error

o X

3) completed successfully!!
and 2 warning messages **+*

Display Log

save the design and move on to DRC and LVS.

EECS427 Fall 2008

Design Rule Check (DRC)

DRC check should be the same as any previous DRC.

Layout versus Schematic (LVS)

Please make sure that you are using the LVS rules from the cmrf8sf tech library. In order to run LVS, it
is slightly different from what you may be used to. First, because we only have a placed and routed
verilog structural netlist, you will have to convert it to a spice netlist. This can be done using the
program v2lvs (which stands for Verilog to LVS). If you are not familiar with it, there is an example of it
in the synth_tutorial/encounter/Makefile, or you can just type “% make cdl_mult’ in that directory
and a cdl file would be made in the synth_tutorial/cdl folder. On top of that, you have to include the
Spice CDL file with all the standard cell definitions which is located at:
/afs/umich.edu/class/eecs427/ibm13/UMSTD13/lvs_netlisttUMSTD13.cdl

It would be easier if you make a link to the standard cell cdl file in the cad6/Calibre/LVS folder. In
order to fit the two files, you have to click the bottom arrow beside the input box. Don’t forget to tell to

hit “add at end” when prompted when you add the CDL file.

I:Z.alitnr-e Interactive - LVS ; lvs,runset,mult [Aafs/umich,eduscls b kaodcadlCalibresl
Eile Transcript Setup Help ‘I
Rules | | & Hierarchical «. Flat «~ Calibre CB |
| Inputs | & Layout vs hetlist . Metlist ws Metlist -~ Metlist Extraction |

Cutputs
: Layout] Metlist] H-Cells]
LVS Options ||

Run Control Files: 707 fckao/synth_tutorial/cdlimult.apr.cdl

FAbM13/UMSTD3vs_nellis/UMSTDN 3.cd = | view
Transcrigt - "3__ J 4

Run L¥3 Format: SFICE — _| Export from schematic viewer ‘
Start RVE Top Cell: [mult

Figure 2: LVS Netlist Input.

EECS427 Fall 2008

Now change the input format to Spice. Before you start the LVS run, make sure that “Recognize all
gates” is selected in the “LVS options” under the “Gate” tab. Remember to save the runset file before
you quit so you don’t have to change the setup every time. If all goes well then you should get your

smiley face!

©©
A

Congratulations! You've just synthesized & placed and routed your first Verilog module!

Import the Verilog Netlist to Create a Schematic View

One way to start of the verilog simulation in the familiar NCverilog environment is to import the verilog
netlist back to the cadence as a schematic view. You can also use this view to do LVS as well. To start
the import process, go to the “CIW” Window and select File >Import->Verilog, and then the following

window will show up:

EECS427 Fall 2008

Verilog In (on ugnl.ee:s.ﬁmlth.edh)

OK Cancel Defaults| Apply | Load Save

File Filter Name |

it

6SCHMAP . MAP

COScheck artisan cells. log
CDScheck jerry sandhbox. log
Calibre/

IMAGE. LIS

fafsumich. edufclass;'.'eecsélQ;f’ffD?;"j ckao/cadl

I Target Library Mame nult Browse

I Reference Libraries UMSTD13 basic cmrfSsf I

I Verilog Files To Import nth_t,utorial,-'.'.verilogfl.nult. apr. v I Add
-f Options Add
-v Options Add
-¥ Options Add

Library Extension

Library Pre-Compilation Options

Pre Compiled Verilog Library |1

|HDL View Name |hdL}
Target Compile Library Name Browse

Compile Verlog Library Only

lgnore Modules File Add
Import Structural Modules As schematic
| Structural View Hames

Schematic | schematic HNetlist netlist

Functional |functional Symbol symbol;

Log File : ,-'.'.verilogIn. log. Work frea ,-"tml:E
Hame Map Table . fwerilogIn, map. table

Overwrite Existing Views ll
Verilog Cell Modules Create Symbol Only 4 Import Import As Functional
Global Nets

Power Net Hame | VDI Ground Net Name | V5§

Global Signals VDD V5§

Schematic Generation Options =»

You need to change the following 3 fields:

Target Library Name

Reference Libraries

Verilog Files to Import
(Note: You might see a handful of warnings saying that the “Verilog definition for module...”
was not found. It should follow by saying that the symbol from UMSTD13 is being used. This is
expected and acceptable. If you view the resulting schematic, the correct symbols from the
reference library, UMSTD13, should be used.)

After you complete the import you can run the Verilog simulation based on your imported schematic.

EECS427

Fall 2008

Post-Layout Simulation (NC-Verilog + SDF Back-annotation)

Next, we use *.apr.v and *.apr.sdf (generated from Encounter) to do the post-layout simulation. The

reason that Verilog simulation is preferred over Spice simulation is that Verilog with sdf annotation is

much faster and also provides enough timing accuracy.

The steps are much the same as what you did in Tutorial 1, except that you need to turn on some

additional options, and add more lines in your testfixture.template.

1. Initialize Design (the same as Tutorial 1).

2. Go to Setup >Netlist and click “Support Escape Names,” “Netlist Explicitly,” and “Declare Global

Locally.”

X Netlist Setup
OK | cancel | Defaults| Apply

Hetlisting Mode Entire Desigh 4 Incremental

orf

- 0O X

Help

Hetlist These Views | functional schematic symboll

Hetlist For LAIFLMSI Models

Generate Verilog Test Fixture Template W

Hetlist Uppercase Generate Pin Map
Hetlist SwilchRC Skip Mull Port
Drop Port Range H Incremental Config List

Stop Netlisting at Views | functional symbol
Global Power Hets VoD

Global Ground Mets VS5

Global Time3cale Overwrite Schematic TimeS3cale

Global Sim Time £

Global Sim Precision L

Unit NS

Unit Nhs

Preserve Buses
Hetlist Uselib

Symbol Implicit

Assign For Alias Skip Timing Information Declare Global Locally W
Support Escape Hames W

Figure 3: NC-Verilog Netlist Setup.

3. Generate Netlist (the same as Tutorial 1).

4. Go to the mult_run1 directory, open “testfixture.verilog”, and give the test signals you want (the

same as Tutorial 1).

5. Go to the mult_run1 directory, open “testfixture.template”, and add the following two lines (shown

on next page in Figure 4) to include “UMSTD13_module.v” and “mult.apr.sdf”.

6. Simulate (the same as Tutorial 1).

7. Open the waveform viewer to see the simulation result (the same as Tutorial 1).

EECS427

Fall 2008

{5 testfixture.template (/afs/umich.edu/class/eecs427/f08/btcline/cadb/mult_runl) - GVIM
File Edit Tools Syntax Buffers Window Help

DEHE® % 9 DD ¥ « BES 4 E» B

“timescale 1ns / 1ns
“include "/afs/umich.edu/class/eecs427/ibm13/UMSTD13/verilog/UMSTD13 module.v" I

module test;

W o ¥
Iinitial $sdf_annotate ("/afs/umich.edu/class/eecs427/f@8/btcline/cad6/synth_tuto rialfsdf;mult.apr.sdf"ltupb ;I

| —
reg clk, resetn;

wire [15:0] vresult;

reg [7:0] b;
reg [7:0] a;

multcﬁ, a, b, result, resetn); These ShOUId matCh

“ifdef verilog

//please enter any additional wverileg stimulus in the testfixture.verilog file
“include "testfixture.verilog"
“endif

“ifdef veritime

// please enter any veritime stimulus in the testfixture.veritime file
“include "testfixture.veritime"

"mult_runl/testfixture.template" 38L, 752C written

7,108 Top

(4]

Figure 4: Modifying testfixture.template.

