Discussion6

Wei-Hsiang Ma

2009/10/27
Announcement

• 11/2 (Mon), I will take about some basic charge-recovery concepts, and some of my previous work
Today

• Finish Tutorial 2 (Post-layout simulation)
• Tutorial 2.5 (Integration Tutorial)
• Integrate everything together: memories, layout from Encounter, and layout from your CAD assignments.
Post-Layout Simulation

• Much faster than full spice simulation
• *.apr.v + *.apr.sdf
• Demo..
Integration Hierarchy

EECS427_top.v

- **EECS427_core.v**
 - Memories
 - Layout from Encounter (PC, Controller)
 - Custom Layout (Datapath, Specific designs)

- **EECS427_pad.v**
 - INPUT
 - OUTPUT
 - VDD
 - VSS
 - DVDD
 - DVSS
Dirty VDD, Dirty VSS

• Dirty VDD (DVDD) is a power supply to communicate with outside world.
 – DVDD has more noise.
 – DVDD is usually larger than VDD.

• Dirty VSS (DVSS) should be separated from VSS to avoid noise issue.
What do you need before integration?

– Decide which memory you want to use
– *.lef and *.apr.v after Encounter
– *.lef and *.v for your custom layout
– A verilog file that has the connectivity of all blocks (without pads)
– The order for your I/O pads
For your custom designs

• *How to make a verilog file for your custom designs?*
 A: Make an empty module with all inputs, and outputs (you don’t have to include VDD, VSS).

• *How to make a lef file for your custom designs?*
 A: Please refer to the lef_example layout, and we also have the tutorial for you.
Demo

- LEF_EXAMPLE
- EECS427_CORE.v (Define the connectivity)
- EECS427_TOP.raw (Define the I/O pads)
- Encounter
- Stream in, Verilog in,
- Fix DRC.
- Add DVDD, DVSS labels and pass LVS.