Assignment

To design a register cell and find timing characteristics.

Description

In this CAD assignment, you will design, layout and simulate a 1-bit register (flip-flop) cell. Your full-custom datapath will require a couple of multi-bit registers and you should design this 1-bit register as a bit-sliced component for this purpose. You probably won’t use this cell in your final datapath, but this exercise will introduce you to complex leaf-cell design as well as datapath style layout concepts. Note that once again you must work on your own for this assignment.

Implementation

It is often desirable to be able to reset asynchronously the state of the register to a known value (usually zero). A typical gate implementation of a positive edge-triggered master-slave D flip-flop is shown in Figure 1.

An example for a static CMOS transmission gate-based implementation is shown in Figure 2. Use of this design, or similar designs more adapted to CMOS technology, would result in many fewer transistors than the flip-flop of Figure 1, and it is not recommended that Figure 1 be used. Note that a conceptually simpler starting point would be a flip-flop composed of two latches (connected in master/slave configuration) like the master latch in Figure 2 (which is still not being held up as the best design).

The flip-flop could be further compacted by using a dynamic or pseudo-dynamic style with two-phase or single-phase clocking, but we do not support dynamic design styles for EECS 427 (pseudo-dynamic is acceptable).
Layout Considerations

Compared to CAD Assignment 1 you should pay more attention to the layout aspects of this design. Consider this a bit-sliced component with a target bit-slice width (pitch) no less than 4um. Bit-slice widths larger than 8um will likely result in odd aspect ratios for your complete datapath. If the bit-slice pitch is too small (e.g. 2um), you may find in the future that you don’t have enough space to route data buses over top of the datapath. Your layout must be a flat layout (i.e. no hierarchy). This will result in a more compact layout. On this and all future CAD assignments, we will be looking more closely at your layout density. Note that the clock drivers and negation need not be included in your cell design (they would be shared across a row of these cells).

![Figure 2: Positive Edge Triggered Flip-flop Using CMOS Transmission Gates and Clocked Inverters](image)

Procedure

Schematic design
Make a directory called cad2 using mkcdkddir and do all your work in that directory. Choose the type of flip-flop that you wish to implement, but be sure to include an asynchronous reset to zero. Use the following port names: `d`, `q`, `q_b`, `clk`, and `rstn` (active low asynchronous reset).
Note: “rstn” corresponds to “r_bar” in Figure 2.

Create a transistor level schematic of the D flip-flop. Size your gates taking speed, power, and area into consideration. There is no “correct” sizing. What is important is that you make an effort to design the logic and the sizing to optimize your register in some way and that you justify those choices in your readme. In particular, please make it completely clear with minimal reading in the readme what your design goals were.

Digital Simulation
Run NCVerilog on the D flip-flop cell to exhaustively simulate the various input, state, and output combinations.

Layout and Verification
When implementing the layout of your cell, you should keep in mind the various layout considerations. While doing DRC and LVS, follow the same procedure as in CAD 1. Be sure to match the ordering of the inputs in your schematic and layout. Save the DRC and LVS reports in the same format as in CAD 1.
Analog Simulation
Extract the parasitic capacitances and run spice on the D flip-flop and obtain the rise and fall CLK-Q delay times as well as the rise and fall setup and hold times for the D flip-flop. (Exactness is not required for the calculation of setup time, but you should try to get a relatively accurate estimate). Remember to add the 25fF capacitor to the output node to account for the load that the flip-flop may drive. Use the cursors to find your delay estimates. Save an image of your waveforms with the cursors in place that helped you calculate the delay.

Setup time/Hold time measurement
Setup
- Store a 1 (0) to the flip-flop and allow to settle for one clock cycle
- Next clock cycle, change D input >=0.25 clock cycle before rising edge and measure CLK-Q delay (50% CLK -> 50% Q)
- Run parametric sweep adjusting D transition later and later – closer to rising edge of CLK (make sure hold time is long too, >=0.25 clock cycle, otherwise hold will affect too!!)
- Setup constraint is time in parametric sweep which causes ≈5% increase in CLK-Q delay (calculated in 2nd step)

Hold
- Store a 1 (0) to the flip-flop and allow to settle for one clock cycle
- Next clock cycle, change D input >=0.25 clock cycle after rising edge and measure CLK-Q (should be similar to 2nd step of setup time)
- Run parametric sweep make D transition earlier and earlier (making sure setup time is long, >= 0.25 clock cycle)
- Hold constraint is time in parametric sweep which causes ≈5% increase in CLK-Q delay (calculated in 2nd step)

Requirements
You should have the following files:
- Schematic of your D flip-flop.
- NC Verilog waveform files showing functional verification of your 1-bit register.
- Briefly describe each simulation in your README file.
- Layout of the D flip-flop (Height/width should be a multiple of 0.4um, M2, M3 should be on grid).
- Spice .png images showing the following: maximum rise and fall CLK-Q delays and setup and hold times for each. Rise/fall delays are measured from the 50% point of CLK to 50% of the Q output transition. You do not have to be exact about the setup time – just get within a few picoseconds.
- DRC and LVS reports
- A README file with the names and paths of all of the requested files. Include a few paragraphs describing your choice of design and verification rationale.
- You need to name your directory cad2, and create a “submit” directory in your cad2 directory. Copy all your drc, lvs reports, and simulation waveform files to the “submit” directory.

Deadline
You need to turn CAD2 in by Monday, Sep. 21st, 2009, 7pm.