EECS 427
VLSI Design I

MW 1:30-3:00pm
Disc: Tu 5:30-6:30pm
Zhengya Zhang
http://www.eecs.umich.edu/courses/eecs427

Slides based on lectures by Prof. Blaauw, Sylvester and Prof. Nikolic, UCB

Outline

• What you can expect to learn in this class
• Logistics – syllabus, deliverables, grading
• CMOS manufacturing process
The First Computer

• The Babbage Difference Engine
 – 25,000 parts
 – cost: £17,470

ENIAC
The First Transistor

Bell Labs, 1948

The First Integrated Circuits

Motorola 1966

Bipolar logic
1960's

ECL 3-input Gate
Motorola 1966
Intel 4004

2300 transistors (12mm²)
740 KHz operation
(10µm PMOS technology)

Intel Pentium 4

Intel, 2005.
125,000,000 transistors
(112mm²)
3.8 GHz operation
(90nm CMOS technology)
Moore’s Law

• In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.
• He made a prediction that semiconductor technology will double its effectiveness every 18 months.
What you will learn in 427

- 312 – Transistors design and behavior
- 270 – Logic design – combining transistors
- 370 – Architecture – high level organization
- 427 – VLSI: realization of circuits in silicon:
 - The entire process of very large-scale integration
 - Generation of custom layout
 - Sub-system design such as adders, register files
 - Synthesis + automated place/route design flow
 - Advanced circuit design topics: pulsed latches, memory decoder and sense amplifiers, power, etc.
- Project – Focus on Custom Design – Teamwork
Non-Disclosure Agreement

Individual NDA for University Account Students and Staff
Statement acknowledging responsibility to protect proprietary material

Complete and give this form to your account liaison to keep for their records.

1. Electronic and hard-copy distribution of proprietary material on campus must be strictly controlled. Electronic paths to restricted documents, unless on local or unlisted computer file servers or on local servers, should be tightly secured. The security mechanisms governing access to these electronic documents should be managed by the appropriate information technology staff of the account department.

2. Every university professor, student, or staff member who has access to proprietary materials from M/OES vendors must sign the following agreement before they are granted document access. The statement will be kept on file for all students participating in this project and maintained by the faculty member with the M/OES account. This agreement is valid for six (6) months from the date of signing and must be renewed every six (6) months.

STATEMENT ACKNOWLEDGING RESPONSIBILITY TO PROTECT PROPRIETARY MATERIAL

My signature below acknowledges that I have read and understand Section 5.3 in the M/OES Customer Agreement (the attached copy) which governs access to proprietary documentation supplied to M/OES customers and other vendors. I understand that proprietary material supplied through the M/OES secure document server or any other means must be viewed only by itself and not shown to any other person. These documents may not be copied to or stored in any medium (paper or a computer). I shall not under any circumstances disclose or expose any record or document at all times.

Name: (Please Print)

Signature: __________________________

Date: ______________

Teaching Staff

- Primary instructor:
 - Zhengya Zhang
 - 2416 EECS, zhengya at eecs.umich
 - Office hours: MW 3-4pm (tentative). Both lecture material and project.

- GSI:
 - Wei-Hsiang Ma
 - 2713 CSE, wsma at umich
 - Office hours: MTh 4-6pm, Tu 6:30-7:30pm
 - Support of CAD (Computer-Aided Design) tools and project related issues as well as lecture material.

- Reader:
 - Bhavi Bhadviya
 - bhavi at umich

- Staff support:
 - Joel Van Laven
 - Major CAD tool issues (pertaining to the project); consult after Wei-Hsiang
Course Setup

• Mon and Wed lectures in 185 EWRE
• Tuesday discussion section led by Wei-Hsiang Ma (1003 EECS)
 – Purpose of discussion: review lecture topics, review CAD assignments and answer project related questions
• Homework assignments
 – Only 1 ‘typical’ HW, others handle planning issues of project (groups, initial proposal, etc.)
• CAD assignments
 – Roughly weekly, several 2+week assignments
 – Each assignment represents a component of your final microprocessor design
 – First 2 are individual, rest are in groups
• Quizzes: 2 - roughly every 6 weeks, non-cumulative.

Project

• Main component of class, 70+% of your grade
• Design a 16-bit RISC (reduced instruction set computing) processor
 – Groups of 4 (you choose)
 • Good to have a mix of EE and CE
 • Baseline architecture (instruction set) given to you; you choose and implement a circuit-level enhancement technique
 – Time requirements: 30-40 hrs/week avg. 427 → 24/7
 – Peer contribution forms; must pull your weight
• Learn full-custom design (datapath) and automation tools (logic synthesis + custom router + place/route)
• You can send this design off to be fabricated and then test it later as a directed study or possibly in EECS 579 (encouraged!)
Logistics

- Lecture notes will be posted online shortly after class sessions and I will bring copies to class for note taking
- Book will be supplemented with several handouts from other sources throughout the semester
- Other books on reserve at Media Union (Weste, Chandrakasan)
 - Weste/Harris in particular is recommended if you want to pursue a career/graduate studies in digital circuits

Grade Breakdown

- Your project, in the form of CAD assignments and final report/presentation, is the dominant part of your grade

 Homework 10%
 CAD assignments 35%
 Quizzes 24% (12% each)
 Final project/report, indiv. contrib. 31%

 CAD late policy: within 24 hours = 25% penalty, 24-48 hours = 50% penalty, see course info handout
Project Schedule

- All CAD assignments due at 7 pm except CAD9
- Tutorial (CAD): Wednesday, September 9, 7-9pm at CSE 1620
- CAD1 (inverter/nand/mux): Wednesday, September 16
- CAD2 (D flip-flop): Monday, September 21
- CAD3 (register file): Wednesday, September 30
- CAD4 (ALU): Wednesday, October 14
- CAD5 (shifter): Wednesday, October 28
- Tutorial (synthesis, place & route): Tuesday, November 3
- CAD6 (datapath): Wednesday, November 4
- CAD7 (program counter): Wednesday, November 11
- CAD8 (controller): Wednesday, November 18
- CAD9 (completion):
 - Presentation & demo: Monday Dec 14 in class
 - Report due: Same day (Dec. 14) at 1:30pm

Homework Schedule

- All HW assignments due at 1:30 pm in class
- HW1 (problem set): Monday, September 21
- HW2 (form a team): Monday, September 28
- HW3 (initial proposal): Wednesday, October 7
- HW4 (detailed proposal): Monday, November 16
- HW5 (final report): Monday, December 14
- HW6 (presentation): Monday, December 14
Quiz and Holiday Schedule

- Quiz 1: Wednesday, October 14 in class
- Fall student break: October 19, 20

- Quiz 2: Monday, November 23 in class
- Thanksgiving break: November 26, 27

- Last day of class: Monday, December 14
- No final exam

Lecture Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Reading/Coverage</th>
<th>Notes, assignments due</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 9</td>
<td>Course Introduction,</td>
<td>1.1-1.3 (review), 2.2, WH 1.2</td>
<td>Tutorial 1 (7-9pm)</td>
</tr>
<tr>
<td>9/14</td>
<td>Design Rules & Layout</td>
<td>2.3, Insert A, WH 1.5, WH 3.3</td>
<td></td>
</tr>
<tr>
<td>9/18</td>
<td>CMOS Review</td>
<td>5.4, 6.2</td>
<td>CAD1 due</td>
</tr>
<tr>
<td>9/21</td>
<td>Logical Effort</td>
<td>handouts</td>
<td>HW1 due</td>
</tr>
<tr>
<td>9/23</td>
<td>Logical Effort</td>
<td>handouts</td>
<td>CAD2 due</td>
</tr>
<tr>
<td>9/28</td>
<td>Logic Styles</td>
<td>6.2</td>
<td>HW2 due (teams)</td>
</tr>
<tr>
<td>9/30</td>
<td>Adders</td>
<td>11.1-11.3.1</td>
<td>CAD3 due</td>
</tr>
<tr>
<td>October 5</td>
<td>Adders</td>
<td>11.3, 11.3.3</td>
<td></td>
</tr>
<tr>
<td>10/7</td>
<td>Shifters</td>
<td>11.5, WH 10.8</td>
<td>HW3 due (initial proposal)</td>
</tr>
<tr>
<td>10/12</td>
<td>Multipliers</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>10/14 Quiz 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/19, 10/20</td>
<td>Fall Study Break, No Classes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lecture Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Recommended Reading</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/21</td>
<td>Power and Energy</td>
<td>5.5, 6.3, CBF 7</td>
<td></td>
</tr>
<tr>
<td>10/24</td>
<td>Dynamic Power Reduction</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>10/28</td>
<td>Leakage Power Reduction</td>
<td>6.4, 2, CBF 4</td>
<td>CAD5 due</td>
</tr>
<tr>
<td>November 2</td>
<td>Dynamic Logic</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>11/4</td>
<td>Interconnects</td>
<td>4.3.1, 4.3.2, 4.4.1-</td>
<td>CAD6 due</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4.3, 9.3.3</td>
<td></td>
</tr>
<tr>
<td>11/9</td>
<td>Design Styles, Synthesis</td>
<td>8.1.8.4</td>
<td></td>
</tr>
<tr>
<td>11/11</td>
<td>Timing, skew/jitter</td>
<td>10.1-10.3</td>
<td>CAD7 due</td>
</tr>
<tr>
<td>11/16</td>
<td>Timing cont., D-Q, pulsed latches</td>
<td>10.3, 7.4</td>
<td>HW4 due (detailed proposal)</td>
</tr>
<tr>
<td>11/18</td>
<td>Memory Core and Peripherals</td>
<td>12.1-12.3</td>
<td>CAD8 due</td>
</tr>
<tr>
<td>11/23</td>
<td>Quiz 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/25</td>
<td>Memory Reliability and Power</td>
<td>12.4, 12.5</td>
<td></td>
</tr>
<tr>
<td>11/28, 11/29</td>
<td>Thanksgiving Break, No Classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/30</td>
<td>Design-for-Test (DFT)</td>
<td>Insert H.3, CBF Ch. 25</td>
<td></td>
</tr>
<tr>
<td>December 2</td>
<td>Clock Distribution & Robustness</td>
<td>10.3.3, 10.6, CBF Ch. 13</td>
<td></td>
</tr>
<tr>
<td>12/7</td>
<td>Advanced Interconnect Techniques</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>12/9</td>
<td>Power Grid and Other Issues</td>
<td>WH 12.3, CBF 24</td>
<td>Course evaluations in class</td>
</tr>
<tr>
<td>12/14</td>
<td>Final Project Demos</td>
<td></td>
<td>CAD9r final due</td>
</tr>
<tr>
<td></td>
<td>Final Project Presentations</td>
<td></td>
<td>HW5 due (report)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HW6 (presentation)</td>
</tr>
</tbody>
</table>
5 Minute break!

CMOS Process
A Modern CMOS Process

Dual-Well Trench-Isolated CMOS Process

Circuit Under Design
Its Layout View

Typical operations in a single photolithographic cycle (from [Fullman]).
Patterning of SiO$_2$

(a) Silicon base material
(b) After oxidation and deposition of negative photoresist
(c) Stepper exposure
(d) After development and etching of resist, chemical or plasma etch of SiO$_2$
(e) After etching
(f) Final result after removal of resist

CMOS Process at a Glance

- Define active areas
- Etch and fill trenches
- Implant well regions
- Deposit and pattern polysilicon layer
- Implant source and drain regions and substrate contacts
- Create contact and via windows
- Deposit and pattern metal layers
CMOS Process Walkthrough

(a) Base material: p+ substrate with p-epi layer

(b) After deposition of gate-oxide and sacrificial nitride (acts as a buffer layer)

(c) After plasma etch of insulating trenches using the inverse of the active area mask

(d) After trench filling, CMP planarization, and removal of sacrificial nitride

(e) After n-well and Vthp adjust implants

(e) After p-well and Vthn adjust implants
CMOS Process Walkthrough

(g) After polysilicon deposition and etch

(h) After n+ source/drain and p+ source/drain implants. These steps also dope poly.

(i) After deposition of SiO2 insulator and contact hole etch

CMOS Process Walkthrough

(j) After deposition and patterning of first Al layer.

(e) After deposition of SiO2 Insulator, etching of vias, deposition and patterning of 2nd layer of Al
Looking Ahead

- http://jas.eng.buffalo.edu/education/fab/invFab/index.html
- Read Sections 1.1, 1.2, 1.3.2-1.3.4, and 2.2 of Rabaey (mostly review)
- Next lecture: we'll cover design rules and layout styles

- Logistics and due dates:
 - Go to tutorial tonight
 - CAD1 is due 9/16
 - HW1 is due 9/21
 - Form your group!