EECS 427
Lecture 18: Interconnects
Readings: 9.2-9.4

Reminders

• Deadlines
 – CAD8 is due Saturday 11/21 at 11:59 pm

• Quiz 2 is on Wednesday 11/25
 – Extended office hours this week
 • Sunday: noon–6 pm
 • Monday 3–3:30 pm and after 5 pm
 • Tuesday 3–6 pm
 – Half-lecture review in class on Monday 11/23
 – Sample Quiz 2 posted

• What is remaining after Quiz 2
 – 2.5 weeks to finish your project by 12/14
Last Time

- SRAM
- DRAM overview (3T and 1T)
- Memory reliability and yield
- Memory power reduction

Impact of Interconnect Parasitics

- Reduce Robustness
- Affect Performance
 - Increase delay
 - Increase power dissipation

Classes of Parasitics

- Capacitive
- Resistive
- Inductive
Capacitive Cross Talk

\[\Delta V_Y = \frac{C_{XY}}{C_Y + C_{XY}} \Delta V_X \]

Capacitive Cross Talk
Dynamic Node

3 x 1 \(\mu \)m overlap: 0.19 V disturbance
Capacitive Cross Talk
Driven Node

Keep time-constant smaller than rise time

Dealing with Capacitive Cross Talk

- Avoid floating nodes
- Protect sensitive nodes
- Make rise and fall times as large as possible
- Differential signaling
- Do not run wires together for a long distance
- Use shielding wires
- Use shielding layers
Shielding

Shielding wire

GND

V_{DD}

GND

Substrate (GND)

Cross Talk and Performance

- When neighboring lines switch in opposite direction of victim line, delay increases

\text{DELAY DEPENDENT UPON ACTIVITY IN NEIGHBORING WIRES}

Miller Effect

- Both terminals of capacitor are switched in opposite directions
 \((0 \rightarrow V_{dd}, V_{dd} \rightarrow 0)\)
- Effective voltage is doubled and additional charge is needed
 \((Q = CV)\)
Impact of Cross Talk on Delay

<table>
<thead>
<tr>
<th>bit k − 1</th>
<th>bit k</th>
<th>bit k + 1</th>
<th>Delay factor g</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>—</td>
<td>$1 + r$</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>$1 + 2r$</td>
</tr>
<tr>
<td>—</td>
<td>↑</td>
<td>—</td>
<td>$1 + 2r$</td>
</tr>
<tr>
<td>—</td>
<td>↑</td>
<td>↓</td>
<td>$1 + 3r$</td>
</tr>
<tr>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>$1 + 4r$</td>
</tr>
</tbody>
</table>

r is ratio between capacitance to GND and to neighbor

Structured Predictable Interconnect

Example: Dense Wire Fabric ([Sunil Kathri])

Trade-off:
• Cross-coupling capacitance 40x lower, 2% delay variation
• Increase in area and overall capacitance
Also: FPGAs, VPGAs
Interconnect Projections
Low-k dielectrics

- Both delay and power are reduced by dropping interconnect capacitance
- Types of low-k materials include: inorganic (SiO$_2$), organic (Polyimides) and aerogels (ultra low-k)
- The numbers below are on the conservative side of the NRTS roadmap

<table>
<thead>
<tr>
<th>Generation</th>
<th>0.25 μm</th>
<th>0.18 μm</th>
<th>0.13 μm</th>
<th>0.1 μm</th>
<th>0.07 μm</th>
<th>0.05 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Constant</td>
<td>3.3</td>
<td>2.7</td>
<td>2.3</td>
<td>2.0</td>
<td>1.8</td>
<td>1.5</td>
</tr>
</tbody>
</table>

EECS 427 F09 Lecture 18

Encoding Data Avoids Worst-Case Conditions

![Diagram of encoding data](Diagram)

In
Encoder
Bus
Decoder
Out

EECS 427 F09 Lecture 18
Driving Large Capacitances

- Transistor Sizing
- Cascaded Buffers

$t_p = \frac{C_L V_{swing}}{I_{av}}$

Using Cascaded Buffers

0.25 μm process
- $C_{in} = 2.5 \text{ fF}$
- $t_{p0} = 30 \text{ ps}$

$F = \frac{C_L}{C_{in}} = 8000$
- $f_{opt} = 3.6$ $N = 7$
- $t_p = 0.76 \text{ ns}$

(See Chapter 5)
Output Driver Design

Trade off Performance for Area and Energy

Given t_{pmax} find N and f

- Area
 \[A_{\text{driver}} = (1 + f + f^2 + \ldots + f^{N-1})A_{\text{min}} = \frac{f^N - 1}{f - 1}A_{\text{min}} = \frac{F - 1}{f - 1}A_{\text{min}} \]

- Energy
 \[E_{\text{driver}} = (1 + f + f^2 + \ldots + f^{N-1})C_fV_D^2 = \frac{F - 1}{f - 1}C_fV_D^2 \approx \frac{C_e}{f - 1}V_D^2 \]

Delay as a Function of F and N
Output Driver Design

0.25 μm process, \(C_L = 20 \text{ pF} \)

Transistor Sizes for optimally-sized cascaded buffer \(t_p = 0.76 \text{ ns} \)

<table>
<thead>
<tr>
<th>Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_n) (μm)</td>
<td>0.375</td>
<td>1.35</td>
<td>4.86</td>
<td>17.5</td>
<td>63</td>
<td>226.8</td>
<td>816.5</td>
</tr>
<tr>
<td>(W_p) (μm)</td>
<td>0.71</td>
<td>2.56</td>
<td>9.2</td>
<td>33.1</td>
<td>119.2</td>
<td>429.3</td>
<td>1545.5</td>
</tr>
</tbody>
</table>

Transistor Sizes of redesigned cascaded buffer \(t_p = 1.8 \text{ ns} \)

<table>
<thead>
<tr>
<th>Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_n) (μm)</td>
<td>0.375</td>
<td>7.5</td>
<td>150</td>
</tr>
<tr>
<td>(W_p) (μm)</td>
<td>0.71</td>
<td>14.4</td>
<td>284</td>
</tr>
</tbody>
</table>

Bonding Pad Design
ESD Protection

- When a chip is connected to a board, there is unknown (potentially large) static voltage difference
- Equalizing potentials requires (large) charge flow through the pads
- Diodes sink this charge into the substrate – need guard rings to pick it up.
Pad Frame

- Layout
- Die Photo

Chip Packaging

- Bond wires (~25μm) are used to connect the package to the chip
- Pads are arranged in a frame around the chip
- Pads are relatively large (~100μm in 0.25μm technology), with large pitch (100μm)
- Many chips areas are ‘pad limited’
Chip Packaging

- An alternative is ‘flip-chip’:
 - Pads are distributed around the chip
 - The soldering balls are placed on pads
 - The chip is ‘flipped’ onto the package
 - Can have many more pads

Reducing the swing

\[t_{PHL} = \frac{C_L V_{swing}}{I_{av}} \]

- Reducing the swing potentially yields linear reduction in delay
- Also results in reduction in power dissipation
- Delay penalty is paid by the receiver
- Requires use of “sense amplifier” to restore signal level
- Frequently designed differentially (e.g. LVDS)
Impact of Resistance

• We have already learned how to drive RC interconnect
• Impact of resistance is commonly seen in power supply distribution:
 – IR drop
 – Voltage variations
• Power supply is distributed to minimize the IR drop and the change in current due to switching of gates

RI Introduced Noise
Resistance and the Power Distribution Problem

Before After

• Requires fast and accurate peak current prediction
• Heavily influenced by packaging technology

Power Distribution

• Low-level distribution is in Metal 1
• Power has to be ‘strapped’ in higher layers of metal.
• The spacing is set by IR drop, electromigration, inductive effects
• Always use multiple contacts on straps
Power and Ground Distribution

(a) Finger-shaped network (b) Network with multiple supply pins

3 Metal Layer Approach
(EV4)

3rd “coarse and thick” metal layer added to the technology for EV4 design
Power supplied from two sides of the die via 3rd metal layer
2nd metal layer used to form power grid
90% of 3rd metal layer used for power/clock routing

Metal 3
Metal 2
Metal 1
4 Metal Layers Approach
(EV5)

- 4th "coarse and thick" metal layer added to the technology for EV5 design
- Power supplied from four sides of the die
- Grid strapping done all in coarse metal
- 90% of 3rd and 4th metals used for power/clock routing

6 Metal Layer Approach – EV6

- 2 reference plane metal layers added to the technology for EV6 design
- Solid planes dedicated to Vdd/Vss
- Significantly lowers resistance of grid
- Lowers on-chip inductance

Courtesy Compaq
Electromigration (1)

Limits dc-current to 1 mA/µm

Electromigration (2)
The Elmore Delay RC Chain

Assume: Wire modeled by N equal-length segments

$$\tau_{DN} = \left(\frac{L}{N}\right)^2 (rc + 2rc + \ldots + Nrc) = (rcL^2)\frac{N(N+1)}{2N^2} = RC\frac{N+1}{2N}$$

For large values of N:

$$\tau_{DN} = \frac{RC}{2} = \frac{rcL^2}{2}$$
RC-Model

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Lumped RC-network</th>
<th>Distributed RC-network</th>
</tr>
</thead>
<tbody>
<tr>
<td>0→50% (t₁)</td>
<td>0.69 RC</td>
<td>0.38 RC</td>
</tr>
<tr>
<td>0→65% (t₂)</td>
<td>RC</td>
<td>0.5 RC</td>
</tr>
<tr>
<td>50%→90% (t₃)</td>
<td>2.2 RC</td>
<td>0.9 RC</td>
</tr>
</tbody>
</table>

Step Response of Lumped and Distributed RC Networks: Points of Interest.

Driving an RC-line

\[t_p = 0.69R_s C_w + 0.38R_w C_w \]
The Global Wire Problem

\[T_d = 0.377 R_w C_w + 0.693 (R_d C_{out} + R_w C_w + R_w C_{out}) \]

Challenges

- No further improvements to be expected after the introduction of Copper (superconducting, optical?)
- Design solutions
 - Use of fat wires
 - Insert repeaters — but might become prohibitive (power, area)
 - Efficient chip floorplanning
- Towards "communication-based" design
 - How to deal with latency?
 - Is synchronicity an absolute necessity?

Using Bypasses

- Driving a word line from both sides
- Using a metal bypass
Reducing RC-delay

For a given technology and a given interconnect layer, there exists an optimal length of the wire segments between repeaters. The delay of these wire segments is independent of the routing layer!

\[M - L \sqrt{\frac{0.38rc}{t_{pbuf}}} \]

(chapter 5)

Repeater Insertion (Revisited)

Taking the repeater loading into account

\[m_{opt} = L \sqrt{\frac{0.38rc}{0.69R_dC_d(\gamma + 1)}} = \frac{t_{pwire/unbuffered}}{t_{p1}} \]

\[s_{opt} = \frac{R_dC}{R_Cd} \]

For a given technology and a given interconnect layer, there exists an optimal length of the wire segments between repeaters. The delay of these wire segments is independent of the routing layer!

\[L_{crit} = \frac{L}{m_{opt}} = \sqrt{\frac{0.38rc}{t_{p1}}} \]

\[t_{p,crit} = \frac{t_{p, min}}{m_{opt}} = 2 \left(1 + \sqrt{\frac{0.69}{0.38(1 + \gamma)}}\right)t_{p1} \]