Reminders

• Project completion by Monday Dec. 14
 – Presentation in class: 1:40-3:30 (~15 minutes per group)
 – Project demo in CSE 1620: 3:30-5:30 (~15 minutes per group)
 – Voluntary individual contribution survey (Dec. 10 – 13)
 – HW5 (final report) due 7 pm
 – CAD9 due 7 pm

• Extra office hours

• Verify your grades on Monday
Clocking

• Clock distribution metrics
 – Area, power, skew
• Clock network distribution types
 – Tree and grid, hybrid
• Clock skew and jitter from previous lectures

Clocks: Power-Hungry

Not only is the clock capacitance large, it switches every cycle!

\[P = \alpha C V_{dd}^2 f \]
Clock Distribution Metric: Area

- Clock networks consume silicon area (clock drivers, PLL, etc.) and routing area
- Routing area is most vital
- Top-level metals are used to reduce RC delays
 - These levels are precious resources (unscaled)
 - Power routing, clock routing, key global signals
- By minimizing area used, we also reduce wiring capacitance & power
- Typical #s: Intel Itanium – 4% of M4/5 used in clock routing

Slew Rates

- To maintain signal integrity and latch performance, minimum slew rates are required
- Too slow – clock is more susceptible to noise, latches are slowed down, eats into timing budget
- Too fast – burning too much power, overdesigned network, enhanced ground bounce
- Rule-of-thumb: \(T_{\text{rise}} \) and \(T_{\text{fall}} \) of clock are each between 10-20\% of clock period (10\% - aggressive target)
 - 1 GHz clock; \(T_{\text{rise}} = T_{\text{fall}} = 100-200\text{ps} \)
The Grid System

- No matching
- Large power (huge drivers)

Network Types: Grid

- Gridded clock distribution was common on earlier DEC Alpha microprocessors
- Advantages:
 - Skew determined by grid density and not overly sensitive to load position
 - Clock signals are available everywhere
 - Tolerant to process variations
 - Usually yields extremely low skew values
Grid Disadvantages

- Huge amounts of wiring & power
 - Wire cap large
 - Strong drivers needed – pre-driver cap large
 - Routing area large
- To minimize all these penalties, make grid pitch coarser
 - Skew gets worse
 - Losing the main advantage
- Don’t overdesign – let the skew be as large as tolerable
- Grids aren’t feasible for most designs due to power

Network Types: Tree

- Original H-tree (Bakoglu)
 - One large central driver
 - Recursive H-style structure to match wirelengths
 - Halve wire width at branching points to reduce reflections
H-Tree Problems

- Drawback to original tree concept
 - slew degradation along long RC paths
 - unrealistically large central driver
 - Clock drivers can create large temperature gradients
 (ex. Alpha 21064 ~30° C)
 - non-uniform load distribution
- Inherently non-scalable (wire resistance skyrockets)
- Solution to some problems
 - Introduce intermediate buffers along the way
 - Specifically at branching points

Buffered H-tree

- Advantages
 - Ideally zero-skew
 - Can be low power (depending on skew requirements)
 - Low area (silicon and wiring)
 - CAD tool friendly (regular)
- Disadvantages
 - Sensitive to process variations
 - Local clocking loads are inherently non-uniform
Realistic H-tree

[Restle98]

Balancing a Tree

(a) Introduce dummy loads
(b) Snaking of wirelength to match delays

Con: Routing area often more valuable than silicon
Network of choice in high-performance

- Globally – Tree
- Why?
 - Power requirements are reduced compared to global grid
 - Smaller routing requirements, frees up global tracks
- Trees are easily balanced at the global level
 - Keeps global skew low (with minimal process variation)

Summary

- Getting the clock everywhere on a die at the exact same time is difficult
 - Requires a lot of power to reduce skew (big drivers, wide wires, etc.)
- Balanced H-trees are in common use
 - Design automation tools exist to synthesize these trees
- Clocks must be robust to variations/noise, have sharp slew rates, not create too much heat, plus other constraints
Power Distribution

- Power distribution network goals
 - Carry current from pads to transistors on chip
 - Maintain stable voltage with low noise
 - Provide average and peak power demands
 - Provide current return paths for signals
 - Avoid electromigration & self-heating wearout
 - Consume little chip and wire area
 - Easy to lay out

Stability Requirement

- $V_{DD} = V_{DDnominal} - V_{droop}$
- Want $V_{droop} < \pm 10\%$ of V_{DD}
- Sources of V_{droop}
 - IR drop
 - L di/dt noise
- I_{DD} changes on many time scales
IR Drop

- Current supplied from voltage source to switching devices traverses a non-ideal power network. This causes the supply voltage appearing at the switching devices to deviate from ideal voltages.

IR Drop Problem

- In response to inputs, gates switch drawing current from the power rails.
- As current is drawn, the voltage supplied to gates deviates from ideal supply voltage.
Technology Trends

- Power consumption of chips increasing while power supply voltages are being reduced
 - greater current demands and larger drops
- Chips have become larger
 - implies longer power lines and hence larger drops
- Impact of IR-drops on performance and signal integrity is stronger
 - IR-drops can become a larger percentage of rail-to-rail voltages

Analysis and correction of IR-drop integrity is critical
Power distribution networks will take up more of the metallization (and design) resources

Performance Degradation

- Reduction in rail-to-rail voltage degrades performance
 - Current drive
 - Propagation delay

- Cell characterization and custom circuit design done with pre defined budgets for IR drop
 - drops larger than the budget causes performance problems
Reduced Noise Margins

- Noise margin reduces as rail-to-rail voltage swing reduces
 - Circuits become more susceptible to false switching due to noise

Dealing with IR Drop

- Large drop at a particular location
 - Widen existing wires
 - Add new wires
- Add more power pads
Electromigration

- Electromigration is the gradual wear of metal wires due to migration of metal atoms
 - protrusions and holes can cause opens or shorts
 - increased resistance causing higher voltage drops
- EM is directly proportional to DC current density
- High current density in Vdd and Gnd wires causes electromigration problems
 - power lines are more vulnerable than signal lines because of unidirectional current

Electromigration

- Vias are especially susceptible to electromigration problems
 - Typically a bottleneck in terms of cross-sectional area through which current can flow
 - Use via arrays
 - Current crowding stresses vias unequally
 - Current crowds around edges of vias rather than using the entire cross-sectional area
Ldi/dt

Impact of inductance on supply voltages:
- Change in current induces a change in voltage
- Longer supply lines and cheaper packages have larger \(L \)

Dealing with Ldi/dt

- Separate power pins for I/O pads and chip core
- Multiple power and ground pins
- Increase rise and fall times of off-chip signals to maximum extent allowable
- Use advanced packaging technologies
- Add decoupling capacitances
 - Typically use MOSFETs with source/drain shorted, large capacitance per unit area due to thin gate oxide
Summary

• Power grid stability is difficult to achieve due to rising power budget and lower voltages (much higher currents in the supply grid)
 – IR drop can be limited through proper grid sizing
 – L*di/dt is a tougher problem; slow things down + add lots of capacitance between Vdd/GND