
EECS427 FALL 2009

 1

Synthesis and APR Tools Tutorial
(Last updated: Oct. 13, 2009)

Introduction
This tutorial will get you familiarized with the design flow of synthesizing and place and routing a

Verilog module. All the files needed to synthesize this module will be given to you for the purposes of

this tutorial, but you will have to supply or modify the files in order to run your own modules in the

future.

First, you will need to synthesize a behavioral Verilog module to generate a synthesized Verilog netlist

using Design Compiler. Then you will have to auto place and route the synthesized Verilog into

layout and finally import the auto placed and routed layout into Cadence and run DRC and LVS. For

the purpose of this tutorial, you will be building a multiplier.

The Example Design
Before you start, please first make sure that you remove the .synopsys_dc.setup file from your home

directory from any previous course, so it doesn’t interfere with you EECS427 project. The example

design for this tutorial is an 8x8 bit multiplier, which can be located in the following directory:

 /afs/umich.edu/class/eecs427/ibm13/synth_tutorial

Please copy this directory over to your personal eecs427 space.

 % cd /afs/umich.edu/class/eecs427/ibm13

 % cp –r synth_tutorial ../f09/<unique name>/cad6/.

Synthesis (Design Compiler dc_shell)

The synthesis process is controlled by a script file that the Synopsys tool dc_shell reads. The newest

version of dc_shell uses the TCL script language

For documentation, run the command sold (Synopsys Online Documentation). You should, at the very

least, look up each command in the synthesis scripts.

To run dc_shell you must invoke the TCL mode of the tool. It is also very helpful to store the verbose

output of the program into a log file.

% dc_shell –xg_mode –tcl_mode –f <yourscript.tcl> | tee <log_file>

EECS427 FALL 2009

 2

For this tutorial’s purposes, the TCL file is located at: synth_tutorial/syn/mult.tcl. You must run that

command while in the TCL folder for the pointers within the TCL file to work. Please examine the TCL

file and try and understand what is going on.

% cd synth_tutorial/syn

% dc_shell –xg_mode –tcl_mode –f mult.tcl | tee mult.dc.log

It is a good practice to use a “Makefile” to execute complex unix commands, and there is one create

for you in this tutorial. Type the following command in the synth_tutorial/syn directory, which will do

the same thing as the previous command.

 % make synth_mult

The Tcl Files
Now that you have seen that the script actually works, it might be a good idea to take a look at all

the .tcl files.

mult.tcl: the main tcl script which calls all other scripts.

common.tcl: the common tcl script that sets up the standard cell library and search path

location.

timing.tcl: the tcl script that set the clock period and input and output delay.

The Output Files
The main output file, located at synth_tutorial/verilog/mult.nl.v, is the synthesized Verilog netlist file

which contains a gate-level (structural) netlist made up of standard library cells. From this point on the

netlist is both process dependent and technology dependent (remember that, in contrast, behavioral

Verilog files are typically process independent). The Synopsys synthesis program also creates a log

file and a report file. The log file is located in the synth_tutorial/syn directory and is named

mult.dc.log. The log file tracks the progress of the tcl script. After each run, you should first check to

see if any command gives you an error message. The report file can be found in synth_tutorial/syn

/mult.dc.rpt. The report file gives you a summary of the quality of the synthesized netlist. It reports

parameters such as area, power, and timing, which might be essential to your design. Another file of

interest is the sdf file which gives you a more accurate model of the delay for verilog simulations. The

sdf file can be found in synth_tutorial/sdf/mult.dc.sdf. The post-synthesis sdf gives you a better

idea of the delay of your design but is not always accurate since it is only based on the gate-level

netlist (there is no physical routing in the synthesized netlist). The post-APR sdf is much more

accurate because it contains parasitics due to interconnect.

EECS427 FALL 2009

 3

Automatic Place & Route (APR)

The main tool for placement and routing is Encounter. While this tool does have a graphical interface,

it also has a textual, command line driven interface found in the same terminal you run Encounter

from. The graphical interface merely presents forms for you to enter in the needed information which

is then printed out as commands. Thus, by looking at the log file the tool generates, you can quickly

learn the commands you need to script the tool.

TCL Script

The TCL script sets different parameters for floorplanning, cell placement, power routing, clock

generation, and I/O pins. Change the parameters as you see fit especially for the floorplan and the

power stripes. For the purpose of this tutorial, the TCL file is provided at:

synth_tutorial/encounter/mult.tcl

Configuration File

The configuration file specifies the technology file locations. The files required by Encounter are the

*.lef, *.lib, and *.v. The LEF file contains metal information of the standard cells used for routing. The

LIB file has timing information for placement and clock distribution network generation. The gate-level

netlist with a “.v” file extension has the connectivity information (this will be a previously synthesized,

or custom structural netlist, e.g., the synth_tutorial/verilog/mult.nl.v created earlier). For the

purpose of this tutorial, the configuration file is provided at:

synth_tutorial/encounter/mult.conf

Pin Placement

In addition, you will need to create a pin-placement constraint file. By looking at the floorplan diagram,

you have to decide the pin placement such that the congestion is minimized during global routing.

There are two ways to create this file. One is to create them by hand and the other way is to create

them using the “Pin Editor” under “Edit”. One thing to note is that encounter is a grid-based router, so

any pins that are not on grid will not be routed. For the purpose of this tutorial, the pin I/O file is

provided at:

synth_tutorial/encounter/mult.save.io

Timing Constraint

The file, “mult.sdc” creates the clock for the encounter tool. Make sure that the clock period and

uncertainty match those in the synthesis script.

Running Encounter:

You can run Encounter in graphical mode until you become familiar with the tool and automate the

EECS427 FALL 2009

 4

scripts to run in text mode.

Here is how you would invoke the executable:

% cd /afs/umich.edu/class/eecs427/f09/<unique name>/cad6/synth_tutorial/encounter

% encounter

Do not run Encounter with a “&” to run it in background mode because the current terminal will be

used for entering the commands. If you accidentally run it in the background, you can bring the

process to the foreground with the “fg” command.

For future CADs, do not forget to edit the *.conf file to change the pathname to your own files. You

may also have to change the aspect ratio, the size of your floorplan, the number of power stripes, etc.

in order to get a compact layout. Most likely you have to hit View����Redraw (hotkey ctrl+R) to see

updated results of the commands you run. For the purposes of this tutorial, we will simply execute the

files that have been provided with the following command while in synth_tutorial/encounter/ :

% cd /afs/umich.edu/class/eecs427/f09/<unique name>/cad6/synth_tutorial/encounter

% encounter –init mult.tcl

Once everything is working, you should get several output files. The main files of interest are *.apr.sdf,

*.lef (which will be in: synth_tutorial/lef), and *.apr.v (which will be in: synth_tutorial/verilog). The

*.apr.sdf is an extracted timing file that lets you back annotate the parasitic for your Verilog simulations.

Most of you should have noticed that the SDF file generated by Design Compiler has no information

about wire delays and all the delay values corresponding to the wires is zero. Note that your placed

design could be different from the synthesized structural netlist because of the insertion of clock tree.

Hence it is important to verify the functionally of the Verilog file generated by Encounter with proper

back-annotation of the corresponding sdf file.

The above command should simply run Encounter with the given mult.tcl, which calls mult.conf and

mult.save.io. If all is successful, you should end with an “encounter > ” prompt. Just enter “win” at the

prompt and the graphical interface should show up with the placed and routed layout of the multiply

module.

For reference, Encounter is a Cadence software so in order to get the manual, you need to run

% acroread /afs/umich.edu/class/eecs427/f09/resources/Encounter_Manual.pdf &

to pull up the manual.

EECS427 FALL 2009

 5

Importing Layout (Cadence)

Open ICFB and create a new cadence library called “mult” in cad6 using the instructions from Tutorial

1. Don’t forget to attach it to the cmr8sf technology library as you have for your previous libraries.

On the CIW (Command Window), click File����Import����Stream. The window shown below in Figure 1

will open up. Fill in the form as shown (also fill in the user-defined data and options sub-forms).

Input File:

/afs/umich.edu/class/eecs427/f09/<unique name>/cad6/synth_tutorial/gds2/mult.gds2

Layer Map Table:

/afs/umich.edu/class/eecs427/f09/resource/gds2cds.map

Then Click OK.

You will see a pop-up message at the end of the process.

Design Rule Check (DRC)
DRC check should be the same as any previous DRC.

Figure 1: Stream in Forms.

EECS427 FALL 2009

 6

Import the Verilog Netlist to Create a Schematic View

One way to start of the verilog simulation in the familiar NCverilog environment is to import the verilog

netlist back to the cadence as a schematic view. You can also use this view to do LVS as well. To start

the import process, go to the “CIW” Window and select File����Import����Verilog, and then the following

window will show up:

You need to change the following 3 fields:

Target Library Name

Reference Libraries

Verilog Files to Import

EECS427 FALL 2009

 7

(Note: You might see a handful of warnings saying that the “Verilog definition for module…”

was not found. It should follow by saying that the symbol from eecs427artisan is being used.

This is expected and acceptable. If you view the resulting schematic, the correct symbols from

the reference library, eecs427artisan, should be used.)

After you complete the import you can run the Verilog simulation based on your imported schematic.

Layout versus Schematic (LVS)

LVS check should be the same as tutorial1.

Congratulations! You’ve just synthesized & placed and routed your first Verilog module!

EECS427 FALL 2009

 8

Post-Layout Simulation (NC-Verilog + SDF Back-annotation)

Next, we use *.apr.v and *.apr.sdf (generated from Encounter) to do the post-layout simulation. The

reason that Verilog simulation is preferred over Spice simulation is that Verilog with sdf annotation is

much faster and also provides enough timing accuracy.

The steps are much the same as what you did in Tutorial 1, except that you need to turn on some

additional options, and add more lines in your testfixture.template.

1. Initialize Design (the same as Tutorial 1).

2. Go to Setup����Netlist and click “Support Escape Names,” “Netlist Explicitly,” and “Declare Global

Locally.”

Figure 2: NC-Verilog Netlist Setup.

3. Generate Netlist (the same as Tutorial 1).

4. Go to the mult_run1 directory, open “testfixture.verilog”, and give the test signals you want (the

same as Tutorial 1).

5. Go to the mult_run1 directory, open “testfixture.template”, and add the following line (shown on

next page in Figure 3) to include “mult.apr.sdf”.

6. Simulate (the same as Tutorial 1).

7. Open the waveform viewer to see the simulation result (the same as Tutorial 1).

EECS427 FALL 2009

 9

Figure 3: Modifying testfixture.template.

They should be the same

