
EECS 427 Winter 2007

 1

CAD5 The Shifter Winter 2007
Assignment

To design a 16-bit shifter for your microprocessor.

Description
The shifter is an essential element for many microprocessor operations. It may be used to align or scale data,
manipulate bits and bytes, or in an automatic or program-controlled shift-and-add multiply function. In the baseline
machine, you are required to implement only a Logical Shift, which shifts data in a register (dest) as specified by a
signed count operand (twos complement). A positive count specifies a left shift; a negative count specifies a right
shift. You must support a shift amount contained in a register or the immediate field of the instruction. All bits shifted
out of the destination register are lost. All destination bits not mapped from the original operand are filled with
zeros.

Other common shift functions, which you may want to add to your processor, depending upon your application, are
arithmetic shifts, arithmetic shift including the carry bit, byte swap, and rotate. In right arithmetic shifts, the high-
order bits are filled with the original sign bit.

To shift the contents of a register one bit per clock cycle, an ordinary shift register, which can be assembled from
cascaded D-latches, could be used. However if there is a need to shift data by an arbitrary number of bit positions
within one clock cycle, a dedicated, programmable shifter is required.

Two frequently used approaches are (i) Barrel Shifters, and (ii) Logarithmic Shifters. While the barrel shifter
implements the whole shifter as an array of pass transistors or multiplexers, the logarithmic shifter uses a staged
approach. In general, barrel shifters are appropriate for small shift width and logarithmic shifters are more suitable
for shifters of large width. Both types of shifter can be implemented in full CMOS transmission gates or nmos pass
gates. Nmos pass gate designs can benefit from level restorers to avoid problems associated with Vt drops..
Shifters should be disabled in low-power designs when they are not in use.

Barrel Shifter

A simple 4x4, transmission-gate barrel shifter is shown in the Rabaey text (Figure 11-37, page 595). It consists of
an array of transmission gates, with the number of rows equal to the bit width of the data words, and there is one
column for each shift possibility. In this case, both are set equal to four. The input to the shifter is the value to be
shifted, a literal <6:0> and the shift amount <3:0>. Weste and Eshraghian’s Table 8.7 shows how different types of
shifter can be implemented by appropriate choice of the literals. To do left shifts or rotates, the shift control inputs
must be swapped. The control wires are routed diagonally through the array. A major advantage of this shifter is
that a signal has to pass through at most one transmission gate, regardless of the size of the shifter. The shifter
delay does, nevertheless, grow linearly with the size of the shifter, as the capacitance at the buffer inputs rises with
additional columns.

The layout size of this shifter is dominated by the number and pitch of wires, rather than by transistor area. The size
of the shifter grows linearly with the number of shift positions allowed. A decoder is required to select one of the
shift lines. This decoder is more easily implemented in the controller (cad8) should you choose to implement a
barrel shifter.

Logarithmic Shifters

In logarithmic shifters, the total shift value is decomposed into shifts over powers of two. A shifter with a maximum
shift width of M consists of a log2 M stages, where the i-th stage either shifts over 2^i or passes the data
unchanged. Rabaey (Figure11-38, page 597) shows a multiplexor-based logarithmic shifter. One could also use
tristate buffer multiplexors or logic gate multiplexors instead of transmission gates. A circuit like this with many
transmission gates in series would benefit from having buffers inserted along the path - perhaps every three stages
or so.. This example is hard wired to give arithmetic right and left shifts (by sign extension for right shift, and making
the least significant bits zero for left shift.). Minor changes will convert it to a logical shift, or a small amount of logic
can replace the hard wiring to allow several kinds of shifts.

Logarithmic shifters have intrinsic decode, as the shift bits are used directly to control the muxes or transmission
gates. Small barrel shifters, however, may be more compact than logarithmic shifters. Logarithmic shifters are
always better when the word size is large and there are many shift possibilities.

EECS 427 Winter 2007

 2

Procedure
• Schematic Design
You may implement any shifter which achieves the required functionality - both left and right logical shifts from 0 to
15 bits. If you are designing the pass transistor-based shifter, keep in mind that you will also have to design the
decoder, but it is sufficient in this CAD assignment to design just the shifter array itself. (The decoder can be done
as part of the control.). Keep in mind that the shift amount is a 2’s complement amount - not signed magnitude!
Some of the shifters presented in class or in the text assume a signed magnitude shift amount. Provide buffering for
any array-wide control signals.
• NCVerilog
Run NCVerilog on the 16-bit shifter and verify that it functions as expected by running a few test sequences (shift
left and right by up to 15 bits).
• Pre-layout HSpice
As with earlier designs, build a schematic for device sizing purposes prior to starting layout. In both shifter types
you will have some significant routing capacitance to deal with. Bumping up device widths will help to some extent.
You may find, especially if you’ve implemented a ripple-carry adder in cad4, that your shifter is much faster than
your alu. You might therefore be tempted to ignore speed optimization for the shifter. However, keep in mind that
the control input has worst-case delay when the control amount is encoded in a register in the register file and that
you may incur additional delays if the control amount is manipulated in the controller prior to being sent to the
shifter.
• Layout
You have to make sure the shifter is bitslice width-matched with rest of your datapath structures. You may find the
layout of the shifter to be metal intensive, especially if you are implementing the pass gate implementation, so think
first of how to run metal lines. There is a tendency to want to make the shifter bitslice width smaller than the register
file and alu. This really doesn’t provide any benefit, though.
• Design Verification
Run DRC, LVS on the entire shifter. Extract the parasitics.
• Analog Simulation
Find the delays through your shifter using HSpice with parasitics.

Requirements
You should have the following in your group’s cad5 directory.
• Schematic of the entire shifter, including the drivers/buffers (but not necessarily the decoder).
• HSpice printouts showing how you calculated delays (with details about your critical path in the README file).
• NCVerilog files showing both left shift, right shift by at least two different values, (and no shift).
• Layout of the shifter. This should include hierarchical layout of the drivers and buffers. You must also have the the
LVS error-free report file in your groups cad5 directory.
• README file. This file should be a report documenting your work for CAD5. This should discuss the
considerations that went into the choice of your shifter design and the floorplanning. You should also discuss the
rise and fall delays and the critical path. Any other comments that you feel are relevant should be included.

Deadline
You need to turn in CAD5 by Friday, February 23, 2007, 7:00 pm.

