
EECS427 1 Winter 2007

CAD6 Program Counter Winter 2007
Assignment

To design the program counter (PC) for your microprocessor. Make this circuit scannable for
inclusion in a scan chain. This will be an individual project. Your group will then use one of your
projects for the processor or make a new PC.

Description
PC
All instructions start by using the contents of the program counter as the address to fetch the next
instruction. The program counter stores the current instruction address and calculates the
address of the next instruction. Storing the current instruction address requires nothing more than
a resetable 16-bit register. However, depending on the current instruction, we must also
determine whether the next instruction is the instruction that follows sequentially or the instruction
resulting from a jump or a branch. Except on Jumps and Branches, the next instruction follows
sequentially from the current instruction (i.e., PC ← PC + 1). The following table lists the
instructions from the baseline architecture which may force an address different from the next
sequential address in the PC.

To avoid confusion concerning the value of the displacement amount for branches, consider the
output listing below from the assembler. Note that the displacement for the ble at 0x141 is 0x0F
(e.g. 0x142 + 0xF = 0x151), not 0x10! Defining the displacement in this manner makes the design
of your program counter simpler since the pc has been incremented to 0x142 by the time you’re
ready to calculate the new branch address.

0140 / 0020; #0000000000100000 (99) test5 or r0 r0
0141 / C70F; #1100011100001111 (100) ble j1
0142 / 0434; #0000010000110100 (101) xor r4 r4

 #0000000101010001 (103) .orig 0x0151
0151 / 0020; #0000000000100000 (104) j1 or r0 r0
0152 / CC0F; #1100110000001111 (105) blt j2
0153 / 0434; #0000010000110100 (106) xor r4 r4

A complication is presented by the fact that the processor is pipelined. One must decide how to
handle changes in program flow in general, as the change in program flow happens, in our case,
in the second stage. Meanwhile, unless we design the control to do differently, the processor
would continue to fetch and decode subsequent instructions that follow the branch or jump.
Several possible solutions are:

1. Always follow a branch or jump instruction with a NOP, or with other instructions that
should be executed anyway. This is done by the compiler in many RISC processors. This is the

EECS427 2 Winter 2007

simplest solution from a hardware point of view. Often the branch delay slots can be filled with
useful instructions.

2. Lock the first stages of the pipeline so that they do not continue to fetch and decode
instructions following a jump or branch. This is equivalent to forcing NOPs in the hardware. This
approach adds some complexity, while reducing code size somewhat, and reducing throughput
somewhat.

3. For conditional branches, guess that the branch will not be changed and continue
fetching and decoding instructions then squash mispredicted instructions. This is only slightly
more complicated than 2) but looses less throughput with the same code size advantage.

4) For conditional branches, guess whether the branch will be taken or not and squash if
wrong. This is significantly more complicated requiring a fast decode (to know whether the
instruction is a conditional branch or jump), a separate arithmetic unit to calculate PC values, and
everything reuiqred for 3) but has the potential of being the fastest.

Option 1 is acceptable for the baseline machine. So, what does the PC need to do?
You should be able to initialize the register to a known state, though this state may not
necessarily be 0x0000 depending on your application. For example, sometimes processors have
operating modes such that they come out of reset fetching from internal memory in one mode and
from external memory in another mode. It must also increment, load in a value for jumps and
either load in a value from the ALU for or calculate and load a target address for branches. Your
program counter must also be made scannable in an effort to improve the testability of your
design. You can decide later whether you’ll implement a single scan chain or multiple scan
chains. The scan means that your PC must have another mode where it acts as a shift register
with a one bit shift in and a one bit shift out.

You should lay out the register file to be appropriate for inclusion in your datapath (i.e inputs and
outputs arranged in the bitslice manner with approximately your datapath width.

Implementation

Register Implementation
From Table 1 it is clear that the next PC value to be stored could be from either an incrementer
(normal), the register file (Jump), or an adder (Branch). The PC unit block shown in your baseline
architecture block diagram, is assumed to include an adder. Branch and Jump instructions could
alternatively use the ALU to calculate the next address. It would also be possible to use the ALU
to increment the PC in the normal case, too, thereby reducing chip area, but complicating control
and routing, and lengthening the critical path.
The method implied by the bus interconnections in the baseline architecture block diagram is
shown below in Figure 1.

EECS427 3 Winter 2007

Synchronous Counter Implementation
You may also design the PC/incrementer as a 16-bit synchronous up-counter with reset and
parallel loading capability. In the common case, it will auto-increment every clock cycle. The
parallel loading ability would be used for loading the branch/jump target calculated by the ALU.
Counters are one of the simplest types of sequential circuits. A counter is usually constructed
from two or more flip-flops which change state in a prescribed sequence when input pulses are
received. Synchronous counters have an advantage over asynchronous counters in that the
stages are clocked simultaneously and the outputs change in a synchronous manner.

Comments
Your PC circuitry must properly execute the instructions in the baseline architecture. Be sure that
it will function properly in the pipelined environment. If you add interrupt capability to your
processor, you must make appropriate extensions to the PC unit. Be sure that you can easily
reset your PC, or set it to some predetermined state.
The PC contents are important state information which you will want to be able to control and
observe when testing your processor. Therefore, these should all be implemented in scannable
flip-flops or latches.
Remember you are working with a lot of new tools. Plan your time ahead and take advantage of
the office hours for help with Synthesis/APR tools.

Requirements

Please turn in the following in your cad6 directory:
• A README file describing the approaches you use to implement the PC and why you used
those approaches. Describe how branch targets are calculated (in PC or in ALU?). As usual, you
may add any other comments you think are pertinent.
• Behavioral Verilog for the PC
• Design Compiler Script (Justify all timing constraints used in your README file)
• Structural Verilog for the PC (Output of Synthesis)
• Layout of the PC that passes DRC.
• Synthesis Timing Report (Describe the worst case path in the readme)

Deadline
You need to turn in CAD 6 by Friday, March 9, 2007, 7pm.

