Motion Estimation for Image Compression

Jimmy Yu

Student
Dept. of EECS
University of Michigan

jtyu@engin.umich.edu

Jack Chao

Student
Dept. of EECS
University of Michigan

jcchao@engin.umich.edu

Yu-Tien Lin

Student
Dept. of EECS
University of Michigan

linyt@engin.umich.edu

Chaitanya Gandra

Student
Dept. of EECS
University of Michigan

cgandra@umich.edu

ABSTRACT
A 16-bit, testable CMOS RISC microprocessor with a 2-stage pipeline is demonstrated as a processing element of a motion estimation system. The exhaustive or Full Search (FS) Block Matching Algorithm (BMA) is most frequently seen in VLSI implementations of motion estimation due to the regularity in data flow and computation.

Keywords
Motion estimation, Image compression, VLSI.

1. INTRODUCTION

Video sequences contain moving objects. The problem of estimating displacements among moving objects in successive frames has many interesting applications such as video coding for high-definition television (HDTV) / multimedia communications / video telephony, target detection and tracking, computer vision.

The basic idea of motion estimation is that consecutive video frames are almost the same except for the motion of the objects or camera. Hence, we find that a region in the current image has a corresponding one in the reference (previous or future) image. For image compression, this region does not have to be encoded again. Instead a motion vector can be used to describe the region’s motion between these two frames. The motion vector and the predicted error image are encoded instead of the complete frame.

2. ALGORITHM
Block-based motion estimation techniques form the basis of most of the video coding schemes. It involves finding a candidate block area in the reference frame within a specified search area that is most similar to a given block in the current frame. BMA assumes translation motion. Deformable BMA allow more complex motion (affine, bilinear).

Motion estimation is typically performed only on luminous blocks to increase the algorithm efficiency. The current frame is segmented into blocks of size nxn pixels. Each block in the current frame is compared to all nxn blocks in the reference frame inside a localized search window of size (n+2d) x (n+2d). d is the maximum displacement relative to the block in the current frame (Fig. 1). Absolute difference (AD) is used as the matching criterion for minimizing the distortion between the reference block and candidate block.

[image: image1]

AD is calculated as follows:

[image: image2.wmf](

)

(

)

(

)

d

d

d

d

j

i

R

d

j

d

i

S

d

d

AD

n

i

n

j

£

£

-

-

+

+

=

å

å

=

=

2

1

1

1

2

1

2

1

,

,

,

,

where

[image: image3.wmf])

,

(

j

i

R

- current block’s pixel in the current frame

[image: image4.wmf](

)

2

1

,

d

j

d

i

S

+

+

 - candidate block’s within search area

The motion vector (V) is determined as the displacement vector which gives the minimum AD

V =
[image: image5.wmf])

,

(

min

|

)

,

(

2

1

2

1

d

d

AD

d

d

Our system assumes that n = 8, d = 4, resulting in a 8x8 current block and a 16x16 search window in the reference frame.

As can be seen from the AD equation, the computation complexity of the FSBMA for an image frame of size NxM is of the order

[image: image6.wmf](

)

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

´

´

+

´

n

M

n

N

d

n

O

2

2

1

2

where the first term represents the AD computation for a single block, the second term represents the AD computation for each possible candidate block within the search window, and the last term is the computation of motion vectors for each block in a frame. Each AD computation in turn involves n2 subtractions, n2 absolute value computations, and n2 additions for accumulating the overall sum of the difference values.

3. APPLICATION

Motion estimation is used in image compression to remove temporal redundancy, along with motion compensation techniques. Most international standards for image compression adopt a hybrid approach to take advantage of temporal and spatial redundancies in video sequences. This is done by merging differential techniques (temporal redundancy) as well as transform-based techniques (spatial redundancy). Differential techniques are based on the Differential Pulse Coded Modulation (DPCM) concept. To exploit temporal redundancy, the current frame is predicted from previous/future frames using motion vectors and residual image information. This has been shown to increase the compression ratio by a large amount. The estimation of motion vectors is computationally intensive and thus plays a key role in video compression. Motion estimation techniques used in H.261 and MPEG, as well as other non-standard compression algorithms, are based on BMAs.

4. CHIP OVERVIEW

4.1 Motion Estimation System

A sample motion estimation system is demonstrated in Fig. 2.

[image: image7]

The primary controller sends image data to several processing elements (PEs). Several PEs in parallel are used to calculate motion vectors. In our implementation, each PE will take an 8x8 block and 16x16 search window as inputs (320 total pixels or words). Each PE calculates the motion vector and sends it back to the controller as output. Our chip functions as a single PE.

4.2 Chip Architecture

Figure 3 shows the block diagram of a 16-bit RISC processor that supports the implementation of the aforementioned algorithm. The external co-processor (i.e. motion estimation system controller) is the only off-chip device that the PE needs to interface with.

[image: image8.emf]Data

Memory

PC

Register

File

ALU

D

e

c

o

d

e

I

n

s

t

r

u

c

t

i

o

n

R

e

g

Shifter

Displacement

Addr. A

Addr. B/WR

Immediate

FETCH EXECUTE

Group 2 RISC Architecture

Instruction

Memory

out0[15]

data to be shifted

shift amount

Input Reg Output Reg

External Co-Processor

O

f

f

-

C

h

i

p

O

n

-

C

h

i

p

Instruction and data memories are both on-chip to reduce delays. The data memory is a 512K RAM that holds an 8x8 block and 16x16 search window obtained as input data. The instruction memory is a 1k ROM that holds the subroutine for calculating the motion vector.

The chip is pipelined in 2 stages and operates at a frequency of 40 MHz. It uses a 5V power supply for VDD with VSS serving as a ground reference.

4.3 Datapath

The datapath includes a program counter (PC), register file (RF), arithmetic and logic unit (ALU), and shifter. All the datapath elements were designed using a full-custom design flow, resulting in a smaller area than can be produced by automated layout tools. Components were created using Mentor Graphics schematic and layout tools (Design Architect, IC Station). Timing analysis and functional verification were accomplished using Accusim and Modelsim, respectively.

The ALU can perform operations on two register operands or one register operand and one immediate operand. The instructions supported are ADD (addition), SUB (subtraction), CMP (compare), ABS (absolute value), AND, OR, and XOR. The ALU uses a carry-select adder as the basic building block. The number of bits for each stage progressed as 2-2-3-4-5 to take advantage of the combinational logic delay between stages and increase computation speed.

The instruction ABS requires that register 0 always has the value x0000. This will be ensured during the ROM encoding process. Take the example ABS r6, which finds the absolute value of the number in r6. If r6 is negative, the ALU performs the operation [r0 – r6] and writes the output to the register file. If r6 is positive, the register file is not write-enabled, and r6 stays the same.

The logarithmic shifter can handle right and left shifts up to 15 bits in each direction. Decoding the shift amount is unnecessary for this type of shifter. The PC uses an internal carry-select adder to calculate branch addresses, thus shortening the chip’s critical path. The RF holds up to 16 words using 16 master latches and 256 slave latches.

Tristate buffers are placed at the output of the datapath elements, peripheral input register, and data memory. This means there is only one writeback bus needed for the RF, leading to a savings in area.

4.4 Controller

The controller includes the instruction register (IR), decode logic, and program status register (PSR). These controller elements were created using a synthesis and automatic place and route (APR) flow. Logic synthesis was done using Synopsys Design Compiler, and APR was done using Cadence Silicon Ensemble. Functional verification for synthesized elements was still done in Modelsim.

The instruction register is a 16-bit register that updates on the positive edge of each clock cycle. The combinational decode logic determines all the control signals that are sent throughout the chip. The PSR contains flags that are set depending on the output of various instructions.

4.5 Input / Output

Two 8-bit registers are provided to facilitate parallel I/O communication with external processor. The design uses a parallel interface because of the large amount of image data transferred in motion estimation. The I/O peripheral registers allow the PE and system controller to run at different frequencies. As a result, they don’t need to be synchronized for data transfer. Both contain 8-bit data registers and a 1-bit register that serves as a control signal. These control signals are necessary for the PE and system controller to communicate with each other. When data is written to the RF, I/O control bits are extended to occupy the upper 8 bits of the 16-bit register. The PE uses datapath operations to check the validity of transferred data.

The input communication protocol for the PE is as follows:

1. Input control = 1. Input data to PE is valid.

2. Output control = 1. PE acknowledges receipt of data.

3. Input control = 0. External processor acknowledges that PE received data.

4. Output control = 0. PE indicates that it is ready for the next pixel to be sent.

Output communication for the PE is similar to the input process, except that the PE and system controller trade places from what is described above. This process makes the greatest use of datapath elements, thus saving chip space.

Specialized instructions are used to transfer data between the peripheral registers and the core. LDIO r7 loads data from InputReg to register 7 in the RF. STIO r8 stores data from register 8 to OutputReg for transfer to the off-chip processor.

4.6 AD Computation

When each pixel in the current block is compared with its corresponding pixel in an 8x8 sliding window of the 16x16 search window, several operations take place. The first operation is to subtract the 8-bit luminance magnitudes to find their brightness difference. The absolute value of this difference is then found and accumulated in a designated register of the RF. This happens for all the pixels in the block in order to determine the accumulated error AD(d1, d2) for the block.

AD(d1, d2) is then compared to the minimum error that has been computed within the reference search window thus far. This minimum error is stored in the RF. If the newly calculated AD is less than the one stored in the minimum error register, the old minimum error value and motion vector coordinates are overwritten. This logic is shown in Fig. 4.

[image: image9.emf]

Subtract pixel values Absolute value Accumulate for entire block

Processing Element Logic (repeat through entire search) window)

Current error

Minimum error comparison Stored minimum error

Reference Block

Current Block

4.7 Recursive Computation

The displacement position is incremented such that all the horizontal and vertical displacements are traversed for the AD computation described in the previous section. Once all 8x8 sections of the 16x16 search window have been analyzed, the final motion vector corresponding to the 8x8 block of lowest AD is written to the peripheral output register and sent to the off-chip processor. This is the final output of the process.

5. DESIGN FOR TEST

An internal scan chain is contained in the chip for testability. The user interface consists of 3 pins: testmode, serial_in, and serial_out. When testmode = 1, the IR, PSR, and PC are linked into a single positive edge-triggered shift register that takes input from serial_in and sends output to serial_out for observation. Figure 5 contains the order of the scan chain.

[image: image10.emf]

LSB - > MSB for all modules

IR PSR PC

serial_in serial_out

The PC can also be reset to x0000 by an active-low external pin r_bar for testing purpose.

6. Pins

There are 31 I/O pins on the chip interface with the external co-processor or are for testing purposes. These include eight power supply pins with a pair of VDD and ground pins on each side of the chip. Parallel I/O ports have 18 pins with nine each for input and output where eight are for data and one is for control.

One pin acts as the system reset pin and is active low. The chip also has three pins (testmode, serial_in, and serial_out) designated for testing purposes. The chip does not have its own clock generator and must receive clock signals from an outside source, requiring a clock pin.

7. TIMING ANALYSIS

Clock period was limited by the STOR (store) instruction. This is because of the 7.4 ns setup time required by the data RAM for proper operation. At the rising edge of the clock, the IR loads in 2 ns, decode takes 2 ns, and RF takes 3.5 ns to read. This means the RAM address appears 7.5 ns after the rising edge of the clock. The RAM write enable signal appears 3 ns after the clock’s negative edge halfway through the period. Since these two signals must be separated by 7.4 ns, this allows for a half period of (7.5 + 7.4 – 3) = 11.9 ns, or a period of about 24 ns.

However, the clock period is rounded up to 25ns to also account for delay underestimation from loading capacitances. Simulating the post-layout chip shows that clock period can be lowered without jeopardizing operation. However, this is partially due to incomplete capacitance estimation. Layout capacitances are used only within the core for timing simulations. Routing between other on-chip components is not taken into account. If these capacitances are included, chip delays will increase slightly.

8. CONCLUSION

This paper described a testable RISC processor that supports the Full Search BMA and is suitable as a processing element in a motion estimation system. This chip makes frequent use of the processor core instead of special purpose hardware to implement the Full Search BMA for non-real-time processing. Chip area is reduced while the resulting increase in delay is not especially detrimental for non-real-time applications.

9. REFERENCES

[1]
INFORMATION TECHNOLOGY – DIGITAL COMPRESSION AND CODING OF CONTINUOUS-TONE STILL IMAGES – REQUIREMENTS AND GUIDELINES, Recommendation T.81.

[2] Feng-Ming Yang, Wolter, S., Laur, R., VLSI architecture for HDTV motion estimation based on block-matching algorithm VLSI Design, 1994, Proceedings of the Seventh InternationalConference

[3]
Jain, J.R., and A.K. Jain, “Displacement Measurement and Its Application in Interframe Image Coding,” IEEE Transactions on Communications, Vol. 29, No. 12 (Dec., 1981).

[4]
Kappagantula, S., and K.R. Rao, “Motion Compensated Interframe Image Prediction,” IEEE Transactions on Communications, 33(9), 1011-1015 (Sept., 1985).

[5]
Koga, J., et al., “Motion Compensated Interframe Coding for Video Conferencing,” Proc. of the National Telecommunications Conference, G5.3.1-5.3.3 (1981).

[6] Liou, M.L., Algorithms and VLSI implementation for block-matching motion estimation, Circuits and Systems, 1994. APCCAS '94

[7] Seung Hyun Nam; Jong Seob Baek; Tae Young Lee; Moon Key Lee, A VLSI design for full search block matching motion estimation ASIC Conference and Exhibit, 1994. Proceedings, Seventh Annual IEEE International, 19-23 Sep 1994

[8]
Weste, Neil H.E., and Kamran Eshraghian, Principles of CMOS VLSI Design, 2nd ed., Addison-Wesley, Reading, MA (1994).

Figure 5. Scan chain.

Figure 4. Flow chart for motion vector algorithm

Figure 2. Motion estimation system

Our Chip

PE

PE

PE

Controller

Address Generation Unit

PE

Figure 3. Chip architecture.

Figure 1. Components of a BMA.

d

8

d

d

d

Reference Block

Displaced Block

[Current Frame]

V = (d1, d2)

8

Reference Frame Search Window

PAGE
4

_1111780430.unknown

_1112347220.unknown

_1112347299.unknown

_1112257374.doc

[image: image1]

LSB -> MSB for all modules

IR

PSR

PC

serial_in

serial_out

_1112347126.unknown

_1111953707.doc

[image: image1]

Subtract pixel values

Absolute value

Accumulate for entire block

Processing Element Logic

(repeat through entire search) window)

Current error

Minimum error comparison

Stored minimum error

Reference Block

Current Block

_1107316151.unknown

