
EECS 427 W07 Lecture 12 1

EECS 427
Lecture 12: Multipliers

Reading: 11.4

EECS 427 W07 Lecture 12 2

Lecture Overview

• Multiplier implementations
• Multipliers are vital in digital signal

processing and standard desktop
processors

• They are speed limiting – complex
operations

• On modern CPUs they are quite fast
– (at cost of large size) generally largest

single logical element (memories bigger)

EECS 427 W07 Lecture 12 3

Binary Multiplication

x

+

Partial products

Multiplicand (M-bits)

Multiplier (N-bits)

Result

1 0 1 0 1 0

1 0 1 0 1 0

1 0 1 0 1 0

1 1 1 0 0 1 1 1 0

0 0 0 0 0 0

1 0 1 1

1 0 1 0 1 0

EECS 427 W07 Lecture 12 4

Key points

• NxM multiplication fits in N+M bits
• 2s complement multiplication is more difficult:

Unlike addition, must think about sign in
implementation, commonly:
– Convert to + numbers and keep track of sign
– Use Booth’s algorithm

• Major steps are:
1) Partial product generation
2) Partial product accumulation
3) Final addition (fast carry lookahead techniques)

EECS 427 W07 Lecture 12 5

Generating Partial Products

• All partial products: AND

• Booth’s recoding – reduction of partial
product count (more later)

X7

PP7

X6

PP6

X5

PP5

X4

PP4

X3

PP3

X2

PP2

X1

PP1

X0

PP0

Yi

EECS 427 W07 Lecture 12 6

Multi-Input Adder

• Suppose we want to add k N-bit words
– Ex: 0001 + 0111 + 1101 + 0010 = 10111

• Straightforward solution: k-1 N-input CPAs
– Large and slow

+

+

0001 0111

+

1101 0010

10101

10111

EECS 427 W07 Lecture 12 7

The Array Multiplier
Y0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

Z = X x Y

1 partial product

EECS 427 W07 Lecture 12 8

MxN Array Multiplier
— Critical Path

Critical Path 1 & 2

Both carry and sum delays important: T-gate adder cell…

HA FA FA HA

HAFAFAFA

FAFA FA HA

Critical Path 1

Critical Path 2

tmult = [(M-1)+(N-2)]tcarry + (N-1) tsum + tand

EECS 427 W07 Lecture 12 9

Carry-Save Addition

• Use k-2 stages of CSAs
– Keep result in carry-save redundant form

• Final CPA computes actual result

4-bit CSA

5-bit CSA

0001 0111 1101 0010

+

10110101_

01010_ 00011

 0001
 0111
+1101
 1011
0101_

X
Y
Z
S
C

 0101_
 1011
 +0010
 00011
01010_

X
Y
Z
S
C

 01010_
+ 00011
 10111

A
B
S

10111

EECS 427 W07 Lecture 12 10

Carry-Save Multiplier

tmult = (N-1)tcarry
+ tand + tmerge

y0y1y2y3

x0

x1

x2

x3

p0p1p2p3p4p5p6p7

B

ASin Cin

SoutCout

BA

CinCout

Sout

Sin

=

CSA
Array

CPA

critical path BA

Sout

Cout CinCout

Sout

=Cin

BA

EECS 427 W07 Lecture 12 11

Tree Multiplier

• Just a carry save adder, but instead of a
linear array, use a tree of carry save
adders

• Connection diagram is awful
• Strange tree : each node has 3 in and 2

out
• Can get 4->2 (binary) rather than 3->2

via specially designed 5->3 adder (5
bits in, 1 sum bit, 2 carry bits)

EECS 427 W07 Lecture 12 12

More on 4-2 compressor

• Inputs a,b,c,d,cin
• Outputs out0, out1, cout
• Cout must be high if 3+ of a,b,c,d are high and must

be low if 3+ are low but can go either way if 2 are
high.

• Cout could thus be majority of a,b,c (cout of full
adder) then out0, out1 outputs of full adder of cin, d,
sum from first full adder

• Essentially just 2 3-2 compressors in series but can
be sized for even delay

• Other logic is also possible e.g. cout = (a+b)(c+d)

EECS 427 W07 Lecture 12 13

Booth Recoding

• To implement 2s complement multiplication,
modified Booth recoding is typically used

• Idea: Recode the multiplier value in a higher
radix in order to reduce the # of partial
products

• Ex: 010111 (23)
011110 (30)

6901 3 2

EECS 427 W07 Lecture 12 14

Booth Recoding

• Now we need to be able to multiply by
0,1,2, or 3
– +3 is not easy to implement; requires two

stages (+4X – 1X OR +2X + 1X)
• Go with +4x – 1X, and “carry” the 4x to

the next PP
• Ex: 010111 (23)

011110 (30)
6902 -1 2

EECS 427 W07 Lecture 12 15

Modified Booth recoding

• Now we have a new linear path through the
recodings. Completely unacceptable for tree
multipliers e.g.

• We need to make the recoding local
• Instead look at three bits at a time (our two,

and previous high order bit) and use negative
2 as well:
– ±2X, ±1X, 0
– Must be able to multiply by 0, 1, 2, -1, -2
– 0 and 1 are easy, 2X involves a shift left by 1 bit

position, -1X: invert all bits and set Cin = 1, -2X:
invert all bits, carry in a 1, and shift left by 1 bit

EECS 427 W07 Lecture 12 16

Recoding table

• Note that when high bit 1 always a negative (i.e.
“carry” of 4Y)

• So just that high bit of last PP used as “carry in”

EECS 427 W07 Lecture 12 17

Example

• 010111 (23)
011110 (30)

690

Originally: 011110

011 +2

111 0

100 -2

LSB extends with 0s

So we have:

(+2)(0)(-2)

EECS 427 W07 Lecture 12 18

Booth Decoding and Partial
Product Generation

O p e ra tio n N E G Z E R O T W O

x 0 0 1 0

x 1 0 0 0

x (-1) 1 0 0

x 2 0 0 1

x (-2) 1 0 1

Booth
Decode

NEG

ZERO

TWO

b2i+1

b2i

b2i-1

0

1

NEG ZERO

Yi-1

TWO

Yi

EECS 427 W07 Lecture 12 19

Example, two 8-bit negative #’s

10110010 = -78
X 10011101 = -99

1111111110110010
00000001001110
111101100100
0010011100

10001111000101010 = 7722

Ignore carry out into 17th place

Recode:
10011101

Extend sign in
partial products

EECS 427 W07 Lecture 12 20

Sign Extension

• Partial products can be negative
– Require sign extension, which is cumbersome

m
ultiplier x

x0

x15

0

0
0

x-1

x16
x17

s
sssssssssssssss

s
sssssssssssss

s
sssssssssss

s
sssssssss

s
sssssss

s
sssss

s
sss

s
s

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

EECS 427 W07 Lecture 12 21

Simplified Sign Ext.
• Sign bits are either all 0’s or all 1’s

– Note that all 0’s is all 1’s + 1 in proper column

s
111111111111111
s

s
1111111111111
s

s
11111111111
s

s
111111111
s

s
1111111
s

s
11111
s

s
111
s

s
1
s

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

EECS 427 W07 Lecture 12 22

Even Simpler Sign Ext.
• No need to add all the 1’s in hardware

– Precompute the answer!

s
sss

s
s1

s
s1

s
s1

s
s1

s
s1

s
s1

s
s

PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7
PP8

EECS 427 W07 Lecture 12 23

Summary

• Generally speaking, multiply function consists of AND
functions to generate the partial products and lots of
addition
– Carry and sum delays of adder cells can be equally critical

• Modified Booth recoding reduces the # of partial
products to be added, improves speed
– Also suitable for 2s complement addition

• Other topics:
– Can pipeline within the multiplier unit to improve throughput
– Tree structures to reduce the # of adders needed and speed

the result (speed becomes logarithmic in # of bits)

	EECS 427�Lecture 12: Multipliers�Reading: 11.4
	Lecture Overview
	Binary Multiplication
	Key points
	Generating Partial Products
	Multi-Input Adder
	The Array Multiplier
	MxN Array Multiplier�— Critical Path
	Carry-Save Addition
	Carry-Save Multiplier
	Tree Multiplier
	More on 4-2 compressor
	Booth Recoding
	Booth Recoding
	Modified Booth recoding
	Recoding table
	Example
	Booth Decoding and Partial Product Generation
	Example, two 8-bit negative #’s
	Sign Extension
	Simplified Sign Ext.
	Even Simpler Sign Ext.
	Summary

