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EECS 427
Lecture 12: Multipliers

Reading: 11.4
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Lecture Overview

• Multiplier implementations
• Multipliers are vital in digital signal 

processing and standard desktop 
processors

• They are speed limiting – complex 
operations

• On modern CPUs they are quite fast
– (at cost of large size)  generally largest 

single logical element (memories bigger)
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Binary Multiplication

x

+

Partial products

Multiplicand (M-bits)

Multiplier  (N-bits)  

Result

1   0   1   0   1   0

1   0   1   0   1   0

1   0   1   0   1   0

1   1   1   0   0   1   1   1   0

0   0   0   0   0   0

1   0   1   1

1   0   1   0   1   0
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Key points

• NxM multiplication fits in N+M bits
• 2s complement multiplication is more difficult: 

Unlike addition, must think about sign in 
implementation, commonly:
– Convert to + numbers and keep track of sign
– Use Booth’s algorithm

• Major steps are:
1) Partial product generation
2) Partial product accumulation
3) Final addition (fast carry lookahead techniques)
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Generating Partial Products

• All partial products: AND

• Booth’s recoding – reduction of partial 
product count (more later)
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Multi-Input Adder

• Suppose we want to add k N-bit words
– Ex: 0001 + 0111 + 1101 + 0010 = 10111

• Straightforward solution: k-1 N-input CPAs
– Large and slow
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The Array Multiplier
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MxN Array Multiplier
— Critical Path

Critical Path 1 & 2

Both carry and sum delays important: T-gate adder cell…

HA FA FA HA

HAFAFAFA

FAFA FA HA

Critical Path 1

Critical Path 2

tmult = [(M-1)+(N-2)]tcarry + (N-1) tsum + tand
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Carry-Save Addition

• Use k-2 stages of CSAs
– Keep result in carry-save redundant form

• Final CPA computes actual result
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5-bit CSA
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Carry-Save Multiplier

tmult = (N-1)tcarry  
+ tand + tmerge
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Tree Multiplier

• Just a carry save adder, but instead of a 
linear array, use a tree of carry save 
adders

• Connection diagram is awful
• Strange tree : each node has 3 in and 2 

out
• Can get 4->2 (binary) rather than 3->2 

via specially designed 5->3 adder (5 
bits in, 1 sum bit, 2 carry bits)
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More on 4-2 compressor

• Inputs a,b,c,d,cin
• Outputs out0, out1, cout
• Cout must be high if 3+ of a,b,c,d are high and must 

be low if 3+ are low but can go either way if 2 are 
high.

• Cout could thus be majority of a,b,c (cout of full 
adder) then out0, out1 outputs of full adder of cin, d, 
sum from first full adder

• Essentially just 2 3-2 compressors in series but can 
be sized for even delay

• Other logic is also possible e.g. cout = (a+b)(c+d) 
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Booth Recoding

• To implement 2s complement multiplication, 
modified Booth recoding is typically used

• Idea: Recode the multiplier value in a higher 
radix in order to reduce the # of partial 
products

• Ex: 010111  (23)
011110  (30)

6901    3 2
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Booth Recoding

• Now we need to be able to multiply by 
0,1,2, or 3
– +3 is not easy to implement; requires two 

stages (+4X – 1X OR +2X + 1X)
• Go with +4x – 1X, and “carry” the 4x to 

the next PP
• Ex: 010111  (23)

011110  (30)
6902   -1 2
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Modified Booth recoding

• Now we have a new linear path through the 
recodings.  Completely unacceptable for tree 
multipliers e.g.

• We need to make the recoding local
• Instead look at three bits at a time (our two, 

and previous high order bit) and use negative 
2 as well:
– ±2X, ±1X, 0
– Must be able to multiply by 0, 1, 2, -1, -2
– 0 and 1 are easy, 2X involves a shift left by 1 bit 

position, -1X: invert all bits and set Cin = 1, -2X: 
invert all bits, carry in a 1, and shift left by 1 bit
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Recoding table

• Note that when high bit 1 always a negative (i.e. 
“carry” of 4Y)

• So just that high bit of last PP used as “carry in”
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Example

• 010111  (23)
011110  (30)

690

Originally: 011110

011 +2

111 0

100 -2

LSB extends with 0s

So we have: 

(+2)(0)(-2)
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Booth Decoding and Partial 
Product Generation

O p e ra tio n N E G Z E R O T W O

x  0 0 1 0
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x  ( -2 ) 1 0 1
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Example, two 8-bit negative #’s

10110010 = -78
X 10011101 = -99

1111111110110010
00000001001110
111101100100
0010011100

10001111000101010   = 7722

Ignore carry out into 17th place

Recode:
10011101

Extend sign in 
partial products
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Sign Extension

• Partial products can be negative
– Require sign extension, which is cumbersome
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Simplified Sign Ext.
• Sign bits are either all 0’s or all 1’s

– Note that all 0’s is all 1’s + 1 in proper column
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Even Simpler Sign Ext.
• No need to add all the 1’s in hardware

– Precompute the answer!
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Summary

• Generally speaking, multiply function consists of AND 
functions to generate the partial products and lots of 
addition
– Carry and sum delays of adder cells can be equally critical

• Modified Booth recoding reduces the # of partial 
products to be added, improves speed
– Also suitable for 2s complement addition

• Other topics:
– Can pipeline within the multiplier unit to improve throughput
– Tree structures to reduce the # of adders needed and speed 

the result (speed becomes logarithmic in # of bits)
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