EECS 427
Lecture 12: Multipliers
Reading: 11.4

EECS 427 W07 Lecture 12

| ecture Overview

e Multiplier implementations

 Multipliers are vital in digital signal
processing and standard desktop
processors

 They are speed limiting — complex
operations

« On modern CPUs they are gquite fast

— (at cost of large size) generally largest
single logical element (memories bigger)

EECS 427 W07 Lecture 12

Binary Multiplication

1 01010
1 011

|

1 01 010
1 01 010

O 0O0O0OOO
1 01010

EECS 427 W07

111001110

Lecture 12

\

/

Multiplicand (M-bits)
Multiplier (N-bits)

Partial products

Result

Key points

 NXM multiplication fits in N+M bits

o 2s complement multiplication is more difficult:
Unlike addition, must think about sign in
Implementation, commonly:

— Convert to + numbers and keep track of sign
— Use Booth’s algorithm
 Major steps are:
1) Partial product generation
2) Partial product accumulation
3) Final addition (fast carry lookahead techniques)

EECS 427 W07 Lecture 12

Generating Partial Products

 All partial products: AND

X X6 X5 X4 X3 Xz X X
e Booth's recoding — reduction of partial
product count (more later)

EECS 427 W07 Lecture 12

Multi-Input Adder

e Suppose we want to add k N-bit words
— Ex: 0001 + 0111 + 1101 + 0010 = 10111

» Straightforward solution: k-1 N-input CPAs
— Large and slow 0001 0111 1101 0010

-
Y

10101

LU

10111

EECS 427 W07 Lecture 12

The Array Multiplier

x3g ng

xlg xog Y,

A

FA < FA

Xzé Xlé Xoé Y1 Zg
Y Y Y
HA

A

Xlé Xoé Y, ' Zy
Y Y

+—1 partial product

x3g
Y

nk

z, Yz,

L=XXY

FA |« FA |< FA |< HA
Y
< g
Y / Y
~< FA [=< FA [< HA
2 ¥z, Y2,
Lecture 12

EECS 427 W07

MxN Array Multiplier
— Critical Path

| ﬁ !

— FA |€&—| HA <«— Critical Path 1
l Goooeee Critical Path 2
HA Critical Path 1 & 2

tmult = [(M'1)+(N'2)]t + (N'l) t

carry sum + 1:and

Both carry and sum delays important: T-gate adder cell...
EECS 427 W07 Lecture 12

Carry-Save Addition

o Use k-2 stages of CSAs
— Keep result in carry-save redundant form

 Final CPA computes actual result

0001 X
0001 0111 1101 0010 0111 Y
T +1101 Z
[A-bit CSA 1011 S
0101 C

0101_L4%011
0101_ X
[5-bit CSA]\ 1011 Y
+0010 Z
01010 00011 o011l S
Y < 01010 C

+
01010 A
10111 + 00011 B
10111 S

EECS 427 W07 Lecture 12

Carry-Save Multiplier

y. y y Y
3/ 2 1 0
X, :I]
| t . = (N-L)t
I mu carry
X, T
CSA + +
| Array tand tmerge
I
X, e
|
|
I
Xq i
/
Z _
{ il (— 7
N R S D N =t CPA
“{ g | J | J L |) _
P, Pe Ps P, P P, P, Pq
AB = ————-
Sin A Cin critical path A B
A B
_ '
B > Sin
— Cout Cin = Cout Cin
N Cout Cin Sout
Cout Sout Sout
Sout

EECS 427 W07 Lecture 12 10

Tree Multiplier

e Just a carry save adder, but instead of a
linear array, use a tree of carry save
adders

e Connection diagram Is awful

e Strange tree : each node has 3 in and 2
out

e Can get 4->2 (binary) rather than 3->2
via specially designed 5->3 adder (5
bits In, 1 sum bit, 2 carry bits)

EECS 427 W07 Lecture 12 11

More on 4-2 compressor

Inputs a,b,c,d,cin
Outputs outO, outl, cout

Cout must be high if 3+ of a,b,c,d are high and must
be low If 3+ are low but can go either way if 2 are
high.

Cout could thus be majority of a,b,c (cout of full
adder) then outO, outl outputs of full adder of cin, d,
sum from first full adder

Essentially just 2 3-2 compressors in series but can
be sized for even delay

Other logic is also possible e.g. cout = (a+b)(c+d)

EECS 427 W07 Lecture 12

Booth Recoding

 To implement 2s complement multiplication,
modified Booth recoding is typically used

« |dea: Recode the multiplier value in a higher
radix in order to reduce the # of partial
products

e EX: 010111 (23)
011110 (30)

e
1 3 2 690

EECS 427 W07 Lecture 12

13

Booth Recoding

 Now we need to be able to multiply by
0,1,2,or3

— +3 IS not easy to implement; requires two
stages (+4X — 1X OR +2X + 1X)

 Go with +4x — 1X, and “carry” the 4x to
the next PP

e EX: 010111 (23)

011110 (30)
5 12 690

EECS 427 W07 Lecture 12

14

Modified Booth recoding

* Now we have a new linear path through the
recodings. Completely unacceptable for tree
multipliers e.qg.

 We need to make the recoding local
* |Instead look at three bits at a time (our two,

and previous high order bit) and use negative

2 as well:
— £2X, £1X, 0
— Must be able to multiply by O, 1, 2, -1, -2

— 0 and 1 are easy, 2X involves a shift left by 1 bit
position, -1X: invert all bits and set Cin = 1, -2X:
Invert all bits, carry in a 1, and shift left by 1 bit

EECS 427 W07 Lecture 12

15

Recoding table

* Note that when high bit 1 always a negative (i.e.
“carry” of 4Y)

e S0 just that high bit of last PP used as “carry in”

| Xi+2Xi+1Xi Add to partial
product
000 +0Y
[001 +1Y
| 010 +1Y
| 011 +2Y
100 -2Y
101 -1Y
110 -1Y
111 -0Y

EECS 427 W07 Lecture 12

Example

+ 010111 (23)

011110 (30)

EECS 427 W07

690

Lecture 12

Originally: 011110
011 - +2

111 >0

100 > -2

LSB extends with 0s

So we have:

(+2)(0)(-2)

17

Booth Decoding and Partial
Product Generation

Operation |NEG ZERO TWO
x 0 0 1 0
x 1 0 0 0
X (-1) 1 0 0
X 2 0 0 1
X (-2) 1 0 1
Y, —
Dgjsy — — NEG v. Dﬁ
Booth 1]
by — — ZERO
Decode
b2i-1 - — TWO

EECS 427 W07

By

TWO NEG ZERO

Lecture 12

18

Example, two 8-bit negative #'s

Extend sign in
partial products

10110010 =-78
\\\\\x 10011101 =-99
™~1111111110110010
00000001001110
111101100100
0010011100
10001111000101010 = 7722
I

Ilgnore carry out into 17t place

EECS 427 W07 Lecture 12

Recode:
10011101

19

Sign Extension

 Partial products can be negative
— Require sign extension, which is cumbersome

o
x

=

sssssssssssssssooooooooooooooooik// X
SSSS5SSSS55SS"”“”“”“”LFiJTo

S SSSSSSSSSS00000000000000000 |S

S SSSSSSSS00000000000000000 EF\\\Jﬁi
SSSSSSS00000000000000000 |S
SSSSS000000000000000060 |S PP,
SSS00000000000000000

Seeeeeeecceeoe

0000000000000

L)
o0
[
/
/k>k<k>ﬂ<ﬂ\
CC0000000000000000
X Jaindnjnw

EECS 427 W07 Lecture 12 20

Simplified Sign Ext.

e Sign bits are either allO’'s or all 1's
— Note that all O’'s is all 1's + 1 in proper column

's|
]111111111111%110000000000000.0.‘1 PP,
s s
]11111111111110000000000000000ﬂ
s | s
]11111111111ooooooooooooooooﬂ
s | s
111111111 000000000000060000
5 o
]111llllooooooooooooooooﬂ
s | s
llllllooooooooooooooooﬂ
s | s

lll................ﬂ
S

S
1............Q.Q.ﬂ
S

0000000000000 00 0

EECS 427 W07 Lecture 12

21

Even Simpler Sign Ext.

e NO need to add all the 1's in hardware

— Precompute the answer!

000000000

g@gg

SSS 0000000000600 0 000

lsoeoo00006060606060606000O0

AR XXX xxxxxxxxxyx
A XXX xxxxxxxx
A X xxxxxxxxxxxxxxx
AR XX XX xxxxrxrxxxx

AR XXX xxxxxxxxx

S0O00 0000000000000
O...OOO....OOO..‘

22

Lecture 12

EECS 427 W07

Summary

* Generally speaking, multiply function consists of AND
functions to generate the partial products and lots of
addition

— Carry and sum delays of adder cells can be equally critical
 Modified Booth recoding reduces the # of partial
products to be added, improves speed
— Also suitable for 2s complement addition
o Other topics:

— Can pipeline within the multiplier unit to improve throughput

— Tree structures to reduce the # of adders needed and speed
the result (speed becomes logarithmic in # of bits)

EECS 427 W07 Lecture 12 23

	EECS 427�Lecture 12: Multipliers�Reading: 11.4
	Lecture Overview
	Binary Multiplication
	Key points
	Generating Partial Products
	Multi-Input Adder
	The Array Multiplier
	MxN Array Multiplier�— Critical Path
	Carry-Save Addition
	Carry-Save Multiplier
	Tree Multiplier
	More on 4-2 compressor
	Booth Recoding
	Booth Recoding
	Modified Booth recoding
	Recoding table
	Example
	Booth Decoding and Partial Product Generation
	Example, two 8-bit negative #’s
	Sign Extension
	Simplified Sign Ext.
	Even Simpler Sign Ext.
	Summary

