EECS 427 Lecture 12: Multipliers Reading: 11.4

Lecture Overview

- Multiplier implementations
- Multipliers are vital in digital signal processing and standard desktop processors
- They are speed limiting complex operations
- On modern CPUs they are quite fast
 - (at cost of large size) generally largest single logical element (memories bigger)

Binary Multiplication

Key points

- NxM multiplication fits in N+M bits
- 2s complement multiplication is more difficult: Unlike addition, must think about sign in implementation, commonly:
 - Convert to + numbers and keep track of sign
 - Use Booth's algorithm
- Major steps are:
 - 1) Partial product generation
 - 2) Partial product accumulation
 - 3) Final addition (fast carry lookahead techniques)

Generating Partial Products

• All partial products: AND

 Booth's recoding – reduction of partial product count (more later)

Multi-Input Adder

- Suppose we want to add k N-bit words
 Ex: 0001 + 0111 + 1101 + 0010 = 10111
- Straightforward solution: k-1 N-input CPAs
 - Large and slow

The Array Multiplier

MxN Array Multiplier — Critical Path

 $t_{mult} = [(M-1)+(N-2)]t_{carry} + (N-1) t_{sum} + t_{and}$

Both carry and sum delays important: T-gate adder cell... EECS 427 W07 Lecture 12 8

Carry-Save Addition

• Use k-2 stages of CSAs

- Keep result in carry-save redundant form

• Final CPA computes actual result

Carry-Save Multiplier

Tree Multiplier

- Just a carry save adder, but instead of a linear array, use a tree of carry save adders
- Connection diagram is awful
- Strange tree : each node has 3 in and 2 out
- Can get 4->2 (binary) rather than 3->2 via specially designed 5->3 adder (5 bits in, 1 sum bit, 2 carry bits)

More on 4-2 compressor

- Inputs a,b,c,d,cin
- Outputs out0, out1, cout
- Cout must be high if 3+ of a,b,c,d are high and must be low if 3+ are low but can go either way if 2 are high.
- Cout could thus be majority of a,b,c (cout of full adder) then out0, out1 outputs of full adder of cin, d, sum from first full adder
- Essentially just 2 3-2 compressors in series but can be sized for even delay
- Other logic is also possible e.g. cout = (a+b)(c+d)

Booth Recoding

- To implement 2s complement multiplication, modified Booth recoding is typically used
- Idea: Recode the multiplier value in a higher radix in order to reduce the # of partial products
- Ex: 010111 (23) 011110 (30) 1 3 2

Booth Recoding

- Now we need to be able to multiply by 0,1,2, or 3
 - +3 is not easy to implement; requires two stages (+4X – 1X OR +2X + 1X)
- Go with +4x 1X, and "carry" the 4x to the next PP
- Ex: 010111 (23) 011110 (30) 2 -1 2 690

Modified Booth recoding

- Now we have a new linear path through the recodings. Completely unacceptable for tree multipliers e.g.
- We need to make the recoding local
- Instead look at three bits at a time (our two, and previous high order bit) and use negative 2 as well:
 - $-\pm 2X, \pm 1X, 0$
 - Must be able to multiply by 0, 1, 2, -1, -2
 - 0 and 1 are easy, 2X involves a shift left by 1 bit position, -1X: invert all bits and set Cin = 1, -2X: invert all bits, carry in a 1, and shift left by 1 bit

Recoding table

- Note that when high bit 1 always a negative (i.e. "carry" of 4Y)
- So just that high bit of last PP used as "carry in"

$x_{i+2}x_{i+1}x_i$	Add to partial product	
000	+0Y	
001	+1Y	
010	+1Y	
011	+2Y	
100	-2Y	
101	-1Y	
110	-1Y	
111	-0Y	

Example

010111 (23)
011110 (30)
690

Originally: 011110 $011 \rightarrow +2$ $111 \rightarrow 0$ $100 \rightarrow -2$ LSB extends with 0s So we have: (+2)(0)(-2)

Booth Decoding and Partial Product Generation

Operation	NEG	ZERO	TWO
x 0	0	1	0
x 1	0	0	0
x (-1)	1	0	0
x 2	0	0	1
x (-2)	1	0	1

Lecture 12

Example, two 8-bit negative #'s

Sign Extension

- Partial products can be negative
 - Require sign extension, which is cumbersome

Simplified Sign Ext.

- Sign bits are either all 0's or all 1's
 - Note that all 0's is all 1's + 1 in proper column

Even Simpler Sign Ext.

• No need to add all the 1's in hardware

– Precompute the answer!

Summary

- Generally speaking, multiply function consists of AND functions to generate the partial products and lots of addition
 - Carry and sum delays of adder cells can be equally critical
- Modified Booth recoding reduces the # of partial products to be added, improves speed
 - Also suitable for 2s complement addition
- Other topics:
 - Can pipeline within the multiplier unit to improve throughput
 - Tree structures to reduce the # of adders needed and speed the result (speed becomes logarithmic in # of bits)