EECS 427
Lecture 18: Clocking, Timing/Latch
Design
Reading: 10.3.1, 10.3.2, 7.4.1
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| ecture Overview

e Last time: Timing and FlipFlop design
— Setup-hold time, D-Q delay
e Today
— Clock distribution
— Impact of clock uncerainty
— Noise sources relevant to FFs
— Pulsed reqgisters
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Clocks: Power-Hungry
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Not only is the clock capacita
switches every cycle!
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Clocks — Objective

* Ensure that timing elements see the clock
signal with zero relative phase difference.

e Clock signal seen at all timing-elements must
have exactly the same frequency.(Which is
why almost ALL clock distribution methods
simply distribute one signal all over the chip)

o Control dissipation in the clock network,
which toggles 2 times per cycle.

e Minimize area overhead of such a clock
system.
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Clock Distribution Metric: Area

e Clock networks consume silicon area (clock drivers,
PLL, etc.) and routing area

 Routing area is most vital

 Top-level metals are used to reduce RC delays
— These levels are precious resources (unscaled)
— Power routing, clock routing, key global signals

By minimizing area used, we also reduce wiring
capacitance & power

* Typical #'s: Intel ltanium — 4% of M4/5 used in clock
routing
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Slew Rates

To maintain signal integrity and latch performance,
minimum slew rates are required

Too slow — clock is more susceptible to noise,
process-variation, latches are slowed down, eats into
timing budget

Too fast — burning too much power, overdesigned
network, enhanced ground bounce

Rule-of-thumb: T, and T,,, of clock are each
between 10-20% of clock period (10% - aggressive
target)

— 1 GHz clock; T, = T¢,; = 100-200ps
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The Grid System
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Network Types: Grid

 Gridded clock distribution
was common on earlier Pre-
DEC Alpha drivers
MICroprocessors

 Advantages:

— Skew determined by grid
density and not overly
sensitive to load position

— Clock signals are available
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— Tolerant to process HF
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— Usually yields extremely nsuus

low skew values
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Grid Disadvantages

Huge amounts of wiring & power

— Wire cap large

— Strong drivers needed — pre-driver cap large
— Routing area large

To minimize all these penalties, make grid pitch
coarser

— Skew gets worse

— Losing the main advantage

Don’t overdesign — let the skew be as large as
tolerable

Grids aren’t feasible for most designs due to power
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Network Types: Tree

e Original H-tree (Bakoglu)
— One large central driver
— Recursive H-style

structure to match
wirelengths

— Halve wire width at
branching points to
reduce reflections
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H-Tree Problems

 Drawback to original tree concept
— slew degradation along long RC paths

— unrealistically large central driver

» Clock drivers can create large temperature gradients
(ex. Alpha 21064 ~30° C)

— non-uniform load distribution

* Inherently non-scalable (wire resistance
skyrockets)

e Solution to some problems
— Introduce intermediate buffers along the way
— Specifically at branching points
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Buffered H-tree

e Advantages
— ldeally zero-skew

— Can be low power
(depending on skew
requirements)

— Low area (silicon and wiring)

— CAD tool friendly (regular)

« Disadvantages

— Sensitive to process
variations

— Local clocking loads are
Inherently non-uniform
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Realistic H-tree
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Balancing a Tree

L2 L3 L4

L X I R
L . . -+
- b Ll
b . " N
o SFIOCDIOOTAE ERak
E .. .
b e e A
e e e N
L 0

> >
(a) (b)
_ Con: Routing area
Some techniques: often more valuable
than silicon

a) Introduce dummy loads

b) Snaking of wirelength to match delays
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Network of choice In high-
performance

Globally — Tree
Why?

Power
requirements are

“’l H Tree

<t+—7>
reduced compared
to global grid cok T
— Smaller routing € L Routed Tree
requirements, frees T L
up global trac_ks R 1
Trees are easily
balanced at the Grid

global level

— Keeps global skew
low (with minimal
process variation) Lecture 18 15



Clock Waveform Nonidealities

 Clock skew
— Spatial variation in temporally equivalent clock
edges, o
e Clock jitter

— Temporal variations in consecutive edges of the
clock signal
« Cycle-to-cycle (short-term) ¢ o
 Longtermt,

 Variation of the pulse width (duty cycle)
— Important for level sensitive (latch-based) clocking
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Clock Skew and Jitter
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« Both skew and jitter impact the effective cycle time
o Skew can be useful. Setup time — Hold time tradeoff
o Jitter always degrades performance
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Clock Uncertainties
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Sources of clock uncertainty
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Jitter Sources

e Caused by variations in clock period that
result from:
— Ring oscillator clocks can be quite “jittery”.
— Phased-lock loop (PLL) oscillation frequency
— Various noise sources affecting clock

generation and distribution

e EX. Power supply noise which
dynamically alters the drive
strength of intermediate buffer
stages. (A “derivative effect’??)

« What happens with a ring oscillator clock?
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# of paths

IBM microprocessor clock skew
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|dealized View of Clock Skew

# of registers

A

Earliest occurrence Latest occurrence

—

of Clk edge of Clk edge
Nominal - 6/2 Nominal + 6 /2
“Clock network delay ' Clk delay
Max Clk skew
o
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Positive and Negative Skew
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(b) Negative skew
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Positive Skew, 6 > 0
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Launching edge arrives before the receiving edge

Good for performance, bad for hold time

Key: Hold time violations cannot be fixed by
running the clock slower!

Question: Will it help if | scale the voltage??
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Negative Skew, 6 <0
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Receiving edge arrives before the launching edge
Bad for performance, good for hold time violations
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Timing Constraints

n R1 Comb I R2
ombinationa
b Q Logic b Q=
JAN /\

CLK T Lok T terkeo
tc -q tlogic
tc -q, cd tlogic, cd
tsu, tho/d

Minimum cycle time:
Iz tc-q + tsu + tlogic -0

Worst case is when receiving edge arrives early (negative 9)
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Timing Constraints

n R1 Comb / R2
ombinationa a
b Q Logic b Q
JAN JAN
A

CLK terki A toike
tc -q tlogic
tc —q, cd tlogic, cd
tsu, tho/d

Hold time constraint:
tio-q, ca) F Liogic, ca) = thoia T O

Worst case is when receiving edge arrives late (positive skew)
Race between data and clock

cd: contamination delay (fastest possible delay)
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Requirements in Flip-Flop Design

* High speed:
o Small Clk-Output delay
o Small setup time
« Small hold time—Inherent race immunity

Low power

Small clock load (clock power is very large)
High driving capability

Integration of the logic into flip-flop
Multiplexed or clock scan (testability)
Robustness

Crosstalk insensitivity

- Dynamic/high impedance nodes are affected
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Sources of Noise

(1) Noise on input

(2) Leakage

(3) o-Particle and cosmic rays
@ Unrelated signal coupling
@ Power supply ripple

-\

Distant driver

DA

VSS @
P
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Flip-Flop Robustness

e Input isolation
— Don’t use a pass-transistor directly at the input (use a buffer)

Storage node related issues:

 Robustness
— No floating nodes, create pseudo-static storage nodes

e Min capacitance limit

— Storage node (middle of cross-couple) should have a decent
amount of capacitance for noise immunity

— Too much will slow things down though...

* Preventing exposure

— Wires associated with storage node should be short,
suppress possible coupling to other nodes
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Pulse-Triggered Registers
An Alternative Approach

Ways to design an edge-triggered sequential cell:

Master-Slave Pulse-Triggered
Latches Latch
L1 L2 L
Data Data
D Q D QF— D QF—

~qck Clk C'_Ik an |— Clk

Clk
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Pulsed Register
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Another Pulsed Register
Topology

Hybrid Latch — Flip-flop (HLFF), AMD K-6 and K-7:
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Pulsed Register Timing Diagram
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Summary

Clocks strongly impact IC performance (timing) and are not ideal
— Skew and jitter are commonly discussed non-idealities
— Skew is typically larger and more heavily focused on

— More on skew later in class when we discuss clock distribution
techniques

Rough rule of thumb: skew should be kept < 10% of clock period
Seguential elements eat up a significant amount of total timing
budget + power resources

— They are therefore extremely important to design carefully

— Robustness is critical as well

D-Q delay is best overall performance measure for edge-triggered

registers since it effectively combines both setup and CLK-Q
delays

New designs like pulsed registers provide enhanced performance
with some added design complexity
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