EECS 427 Lecture 3: CMOS review II Reading: 3.1, 3.2, 5.1-5.4, 6.2

Recap

- CMOS review I
 - Basic transistor operation
 - Inverter DC transfer curve
 - CMOS logic driving load capacitance
 - Delay calculation
 - Simplified RC charging/discharging model
 - Dependence of gate size on delay
 - Gate sizing motivation

Outline

- CMOS review I
 - Basic transistor operation
 - Inverter DC transfer curve
 - CMOS logic driving load capacitance
 - Delay calculation
 - Simplified RC charging/discharging model
 - Dependence of gate size on delay
 - Gate sizing motivation

Fast Complex Gates: Design Techniques

 Transistor ordering to set critical path input closest to output

delay determined by time to discharge C_L , C_1 and C_2

delay determined by time to discharge C_L

critical path

 $\ln_2 \frac{1}{M_2} \stackrel{\perp}{=} C_2 \text{discharged}$

 $In_3 \stackrel{1}{=} M_1 \stackrel{\pm}{=} C_1$ discharged

M3

C^{charged}

Fast Complex Gates: Design Techniques- Asymmetric Gates

- Critical path is from c/d to output
- Why should gate delay for G3 be equal for both pins?
- Size up one input
 - Increases load capacitance of that pin
 - Improves drive strength of gate

A – out = 100ps B – out = 120ps C – out = 200ps D – out = 200ps

Fast Complex Gates: Pin - ordering

 Pin corresponding to critical path nearest to output

delay determined by time to discharge C_L , C_1 and C_2

critical path $10 \rightarrow 1$ $M_3 \pm C_L^{charged}$ $In_2 + M_2 \pm C_2^{discharged}$ $In_3 + M_1 \pm C_1^{discharged}$

delay determined by time to discharge C_L

Fast Complex Gates: Design Techniques

• Isolating fan-in from fan-out using buffer insertion T = 1R.30C T = 1R.3C + 1R*9C + 1/3R*30C = 22RC

Recommended evaluations

- Calculate the β ratio in your process
- Compute I_{dsat} and V_{dsat} for NMOS and PMOS devices
- Calculate the approximate gate capacitance per micron for NMOS and PMOS devices
- Calculate unit inverter delay (Wn=1u, Wp= for: β u
 - Self-loading
 - 10 micron of M1 wire with adjacent metal
 - Driving 4 copies of itself

Interconnect

- Gate delays reduce with technology scaling
- Global interconnect delays increase with scaling
 - Interconnects must be included in analysis and optimization

Technology Generation

Interconnect Parasitics

- Classes of parasitics
 - Capacitance
 - Resistance
 - Inductance (627 focuses on this)
- Impact of interconnect parasitics
 - Increases propagation delay
 - Energy dissipation
 - Loss in power distribution
 - Reliability and signal integrity
 - Clock-skew

Interconnect Modeling

- Lumped capacitance model is what we use for device/gate analysis
- Lumped RC model
 - For simple one segment RC:
 - 50% Delay = 0.69*RC
 - 10-90% Slew = 2.2*RC
- Distributed RC line model
 - More accurate for interconnect analysis
 - 50% Delay = 0.38*RC
 - 10-90% Slew = 0.9*RC
- Either way, wire delay is quadratic with wire length

How to reduce RC delay

- Since RC delay is quadratic with length, reducing length is key
- Note: $2^2 = 4$ and 1+1 = 2 but $1^2 + 1^2 = 2$

Repeaters

Repeater = strong driver (usually an inverter or pair of inverters for non-inverting polarity) placed along a long RC line to "break up" the line and reduce delay

We need to determine optimal # of repeaters and their size based on wire and device delay properties

Repeaters Impact

Process Technology Node (nm)

Coupling Capacitance

• To reduce interconnect resistance, thickness is not scaled as aggressively as the width of the interconnect

Capacitive Cross Talk

Capacitive Cross Talk

Keep time-constant small (size up driver of node Y)

Lecture 3

Dealing with Capacitive Cross Talk

- Avoid floating nodes (keepers!)
- Protect sensitive nodes (keep wires short)
- Make rise and fall times as large as possible
- Do not run wires together for a long distance
- Use shielding wires
- Use shielding layers

Shielding

Impact of Crosstalk on Delay

DELAY DEPENDENT UPON ACTIVITY IN NEIGHBORING WIRES! (very important today)

- Both terminals of capacitor are switched in opposite directions $(0 \to V_{\rm dd}, V_{\rm dd} \to 0)$
- Effective voltage is doubled and additional charge is needed (from Q=CV)

EECS 427 W07

Lecture 3