EECS 427 Lecture 4: Euler Path layout, Registers Reading: Insert D, 7.1, 7.2

Last Time

- Static CMOS review
 - No static power dissipation
 - Full logic swing
 - Easy to design, non-ratioed
 - Delay analysis
 - Sizing of gates

Today

- The Euler path layout method
- Registers & timing review
- Project Group getting to know everyone

Euler Path Layout

- Semi-automated way to share sources, drains
- Can be a useful tool to get you started
- Not always the best approach
- Know Euler's results, makes things much easier
 - Odd degree vertices are problems
 - If two such vertices, start at one end at other.

Euler Path Layout

- Two graphs: pmos, nmos
- Vertices are nets (source/drain)
- Edges are gates (also nets)
- Walk two simultaneous Euler paths through graphs hitting edges with same label whenever possible
- Draw paths as lines, label, connect and you have a stick diagram of a layout

Quick Flip-Flop (Register) Discussion, CAD2

- Clocked inverters vs. transmission gates vs. nand gates
- Weak inverters
- Asynchronous reset options
- Bitslice width matching
 - Diff. components of datapath should align (see document on web)

Timing Constraints

Minimum cycle time: $T \ge t_{c-q} + t_{su} + t_{logic} - \delta$

Worst case is when receiving edge arrives early (negative δ)

Timing Constraints

Hold time constraint:

$$t_{(c-q, cd)} + t_{(logic, cd)} > t_{hold} + \delta$$

Worst case is when receiving edge arrives late (positive skew) Race between data and clock

cd: contamination delay (fastest possible delay)

EECS 427 W07

Requirements in Flip-Flop Design

- High speed:
 - Small Clk-Output delay
 - Small setup time
 - Small hold time→Inherent race immunity
- Low power
- Small clock load (clock power is very large)
- High driving capability
- Integration of the logic into flip-flop
- Multiplexed or clock scan (testability)
- Robustness
- Crosstalk insensitivity
 - Dynamic/high impedance nodes are affected

Sources of Noise

- (1) Noise on input
- Leakage
- (3) α -Particle and cosmic rays
- (4) Unrelated signal coupling
- 5 Power supply ripple

Flip-Flop Robustness

- Input isolation
 - Don't use a pass-transistor directly at the input (use a buffer)
- Storage node related issues:
- Robustness
 - No floating nodes, create pseudo-static storage nodes
- Min capacitance limit
 - Storage node (middle of cross-couple) should have a decent amount of capacitance for noise immunity
 - Too much will slow things down though...
- Preventing exposure
 - Wires associated with storage node should be short, suppress possible coupling to other nodes

More Precise Setup Time Definition

Setup time is a fairly vague concept

The correct data can be captured but the delay can be greatly affected

Where is the threshold?

Minimum D-Q delay is the fastest possible way to transfer input to output, related to the sum of T_{setup} and T_{clk-Q} EECS 427 W07 Lecture 4 12

CLK-Q vs. Setup/Hold Times

EECS 427 W07

Lecture 4

D-Q and setup time summary

- Define setup time as the point at which CLK-Q delay rises 5% beyond nominal
 - Nominal is measured when data arrives much earlier than CLK edge
 - This corresponds roughly to where the total D-Q delay is minimized

Pulse-Triggered Registers An Alternative Approach

Ways to design an edge-triggered sequential cell:

Master-Slave Latches Pulse-Triggered Latch

CAD 2

- Don't worry too much about sizing
- Try not to be penny-wise and poundfoolish
- The best way to a small layout is have fewer transistors to lay out
- Control signals generally shared, think about part as one in a row of similarly controlled cells

Forming Groups

- Want:
 - Good layout
 - Good logic synthesis
 - Understand of architecture
 - An application and knowledge of it
 - Reasonably similar aspirations for the project
 - Personal compatibility