EECS 427 Lecture 6: Logic Effort *Back of the envelope* gate sizing Reading : Sutherland et. Al "Logical Effort"

Outline: logic effort

- Motivation and intuition
- Model the delay of one gate
- The delay of a chain of gates (multistage)
- Branching
- Minimum delay
- Best number of stages and gate sizing
- Complex gates
- Asymmetric gates
- Unequal rise and fall times
- Examples
- Limitations

Logical Effort motivation

- Sizing of a chain of inverters
 - Geometric progression
- How about more complex logic?
- Logical Effort objectives:
 - Quick & dirty, back of the envelope sizing
 - Make trade-off between circuits
- Reference:
 - I. Sutherland, B. Sproull, D. Harris, Logic Effort designing fast CMOS Circuits Academic Press, 1999

Delay : Output / Input load

Let's model the delay as a function of the output / input load

$$D \approx RC_{sl} + RC_{in} \frac{C_{out}}{C_{in}}$$

- p = Parasitic (intrinsic) delay
- g = Logical effort
- h = Electrical effort
- f = Effort delay or Stage effort

Figure of Merit

- Assume that rise delay = fall delay
 - Simplifying assumption, of reducing relevance

- Therefore $R_p(inv) = R_n(inv)$

• Consider the RC product of a minimum sized gate.

$$-R_0 = R_p = R_n$$

- $-C_0 = C_{in}$ (total input capacitance)
- As W varies as kW_{min} , - RC product = $1/kR_0 * kC_0 = R_0C_0$

Figure of Merit - Inverter

- Consider an inverter with equal rise and fall delay.
 - Remember that size does not matter for figure of merit
 - For the sake of simplicity, consider a minimum sized inverter, $W_p = 2W_n = W_{min}$

•
$$C_{in} = C_n + C_p = C_{min} + 2C_{min} = 3C_{min}$$

- $R_{eff} = R_{min}$
- $\Box \ \tau = R_{\min} C_{\min}$
- RC product (in units of τ) = 3
- Evaluate all RC products in the same units to get delay
- In addition, by using a figure of merit which is relative to the inverter RC product, we get delay in units of inverter delay.

Units of effort

• Reference is the inverter:

$$g_{inv} = 1$$

 $p_{inv} = 0.6$

- g is a function of the complexity of a gate, not its size
 - Additional delay from driving its own input loading
- p is a function of the technology
 - Unloaded delay of a gate

Logical effort

 Logic effort can be thought of the size of a gate relative to an inverter to produce the same output current as an inverter with the same output load

EECS 427 W07

Lecture 6

Logical effort (g)

Number of inputs

Gate type	1	2	3	4	5	n
Inverter	1					
NAND		4/3	5/3	6/3	7/3	(n + 2)/3
NOR		5/3	7/3	9/3	11/3	(2n + 1)/3
Multiplexer		2	2	2	2	2
XOR (parity)		4	12	32		

Parasitic Delay (p)

Gate type	Parasitic Delay			
Inverter	P _{inv}			
n-input NAND	n.p _{inv}			
n-input NOR	n.p _{inv}			
n-way multiplexer	2n.p _{inv}			
XOR, XNOR	4.p _{inv}			

Delay components

EECS 427 W07

Lecture 6

I. Sutherland, *et al*, Logical Effort, Academic Press, 1999 11

F04 Example

$$C_{out} = 4C_{in}$$

 $h = 4$

$$g = 1$$

$$p = 0.6$$

$$D = 4 + 0.6 = 4.6\tau$$

More complex circuit

Multistage effort

Defining the path effort H as:

$$H = \frac{C_3}{C_1}$$

$$h_1 = \frac{C_2}{C_1}$$

$$h_2 = \frac{C_3}{C_2}$$

$$H = h_1 h_2$$

What was that homework problem all about??

- Recap of Question : Minimize the perimeter of a rectangle with dimensions w,h, for a constant area.
- Result is clearly a square.
- Corollary of a specific optimization problem which minimizes the sum of variables given the constraint that the product is constant

Branching

Without branching: $H = h_1 h_2$ $h_2 = \frac{C_3}{C_2}$ With branching: $h_1 = \frac{3C_2}{C_1}$ $h_1h_2 = 3H$ $C_{on-path,2} = C_2$ $C_{off-path,2} = 2C_2$

$$b_2 = \frac{3C_2}{C_2} = 3$$

Lecture 6

Equivalent Path Efforts

$$H = \frac{C_{out}}{C_{in}}$$
$$B = \prod b_i$$
$$\prod h_i = BH$$
$$G = \prod g_i$$

Path Effort $F = GBH = \prod g_i h_i$

Path Effort:

- Does not change with added inverters
- Does not depend on sizes, but on topology

Minimum Delay

$$F = GBH = \prod g_i h_i$$

Stage effort of stage i: f_i $g_i h_i = f_i$
Optimal stage effort is: $\hat{f} = f_i$
For N stages: $F = \hat{f}^N \Longrightarrow \hat{f} = F^{1/N}$
Minimum Delay: $\hat{D} = \sum_i g_i h_i + p_i$
 $\hat{D} = N\hat{f} + \sum_i p_i = N\hat{f} + P$

Example: compute min. delay

Summary

- Instruction set and general 2-stage pipeline structure of the baseline processor
 - More on this in upcoming discussions
- Logic Effort:
 - Delay of an individual gate
 - Path delay
 - Minimum path delay