#### EECS 427 Lecture 7: Logic Effort – Continues...

Reading: handouts

## Last Time

- Project overview
- Logic effort
  - Delay computation for individual gates
  - Comparison of gate topologies
- CAD 3 due on Monday Oct 2
- All teams finalized?
- Find project topic...
- HW1 graded

## Outline

- Motivation
- Model the delay of one gate

Last time

- The delay of a chain of gates
- Branching
- Minimum delay
- Best number of stages and gate sizing
- Examples
- Limitations

## Review: Output / Input load

Let's model the delay as a function of the output / input load







- $D \approx p + g \cdot h$   $f = g \cdot h$
- p = Parasitic (intrinsic) delay
- g = Logical effort
- h = Electrical effort
- f = Effort delay or Stage effort

#### Review: More complex circuit



## Multistage effort



Defining the path effort H as:

$$H = \frac{C_3}{C_1}$$

$$h_1 = \frac{C_2}{C_1}$$

$$h_2 = \frac{C_3}{C_2}$$

$$H = h_1 h_2$$



## Branching



 $h_2 = \frac{C_3}{C_2}$ With branching:  $h_1 = \frac{3C_2}{C_1}$  $h_1 h_2 = 3H$  $C_{on-path,2} = C_2$  $C_{off-path,2} = 2C_2$  $b_2 = \frac{3C_2}{C} = 3$ 

Lecture 7

## **Equivalent Path Efforts**

$$H = \frac{C_{out}}{C_{in}}$$
$$B = \prod b_i$$
$$\prod h_i = BH$$
$$G = \prod g_i$$

Path Effort  $F = GBH = \prod g_i h_i$ 

#### Path Effort:

- Does not change with added inverters
- Does not depend on sizes, but on topology

## Minimum Delay

$$F = GBH = \prod g_i h_i$$
  
Stage effort of stage i:  $f_i$   $g_i h_i = f_i$   
Optimal stage effort is:  $\hat{f} = f_i$   
For N stages:  $F = \hat{f}^N \Longrightarrow \hat{f} = F^{1/N}$   
Minimum Delay:  $\hat{D} = \sum_i g_i h_i + p_i$   
 $\hat{D} = N\hat{f} + \sum_i p_i = N\hat{f} + P$ 

#### Example: compute min. delay



## Stage sizing

After computing  $\hat{f}$ 

$$h_{i} = \hat{f} / g_{i} = C_{out} / C_{in}$$
$$C_{in} = \frac{g_{i}C_{out}}{\hat{f}}$$

Work backwards to size each gate



#### Stage sizing example



## Number of stages

- Path effort F can be used to determine the optimal number of stages
  - Assuming we add n<sub>2</sub> inverters
    - New number of stages N=n<sub>1</sub>+n<sub>2</sub>
    - G, B, H don't change F is fixed
    - But P increases

$$\hat{D} = NF^{1/N} + \sum_{i}^{n_{1}} p_{i} + (N - n_{1}) p_{inv}$$

#### Optimum is technology dependent

EECS 427 W07

Lecture 7

## Optimal stage effort

$$D = NF^{1/N} + \sum_{i}^{n_{1}} p_{i} + (N - n_{1}) p_{inv}$$

Assuming for now that N is differentiable

$$\frac{\partial D}{\partial N} = p_{inv} + F^{1/N} (1 - \ln F^{1/N})$$

Let  $\rho$  be the optimal stage delay. Then  $\rho$  satisfies:

$$\rho(1-\ln\rho) + p_{inv} = 0$$

#### Best number of stages for $p_{inv} = 1.0\tau$

| Path effort F | Best number of stages $\hat{f}$ | Min. delay $\hat{D}$ | Stage effort f                          |
|---------------|---------------------------------|----------------------|-----------------------------------------|
| 0             |                                 | 1.0                  |                                         |
|               | 1                               |                      | 0-5.8                                   |
| 5.83          |                                 | 6.8                  |                                         |
|               | 2                               |                      | 2.4-2.7                                 |
| 22.3          |                                 | 11.4                 |                                         |
|               | 3                               |                      | 2.8-4.4                                 |
| 82.2          |                                 | 16.0                 |                                         |
|               | 4                               |                      | 3.0-4.2                                 |
| 300           |                                 | 20.7                 |                                         |
|               | 5                               |                      | 3.1-4.1                                 |
| 1090          |                                 | 25.3                 |                                         |
|               | 6                               |                      | 3.2-4.0                                 |
| 3920          | _                               | 29.8                 |                                         |
| 4 4 9 9 9     | 7                               | 0.4.4                | 3.3-3.9                                 |
| 14200         |                                 | 34.4                 | t al Logical Effort Academic Pross 1000 |
| EECS 427 W07  | Lecture                         |                      | $10^{\circ}$                            |

## Summary of the method

| Gate level        |                              | Path                   |                                                        |
|-------------------|------------------------------|------------------------|--------------------------------------------------------|
| Parasitic delay   | p                            | Path electrical effort | $H = \frac{C_{out-path}}{C_{in-path}}$                 |
| Logical effort    | g<br>C                       | Path logical effort    | $G = \prod g_i$                                        |
| Electrical effort | $h = \frac{C_{out}}{C_{in}}$ | Branch effort          | $B = \prod b_i$                                        |
| Stage effort      | f = gh                       |                        | $\prod h_i = BH$                                       |
| Stage delay       | d = f + p                    | Branching factor       | $b_i = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$ |

## Method

| Path effort          | F = GBH                                      |
|----------------------|----------------------------------------------|
| Optimal stage effort | $\hat{f}=F^{1/N}$                            |
| Optimal path delay   | $\hat{D} = NF^{1/N} + P$                     |
| Stage sizing         | $C_{in} = \frac{g_i C_{out-stage}}{\hat{f}}$ |

- 1. Compute path effort
- 2. Add buffers (determine optimal number of stages)
- 3. Compute optimal stage effort and minimum delay
- 4. Size individual gates (working backwards)

### Method example 1/3



$$G = \frac{5}{3} \cdot 1 \cdot \frac{5}{3} = \frac{25}{9}$$
$$B = 1 \cdot 2 \cdot 1 = 2$$
$$H = 60$$
$$\sum p_i = 3 + 1 + 2 = 6$$

$$F = GBH = 333.33 \rightarrow \hat{N} = 5$$
$$\hat{D} = 5(333.33)^{1/5} + 6 + 2 = 24\tau$$
$$\hat{f} = (333.33)^{1/5} = 3.2$$

- From the table, the optimum number of stages for F=333.33 is 5.
- We have to add 2 inverters to the existing 3 stages.

### Method example: Sizing 2/3



EECS 427 W07

Lecture 7

### Method example: sizing 3/3



EECS 427 W07

Lecture 7

## Wrong number of stages





I. Sutherland, *et al*, Logical Effort, Academic Press, 1999 22

## Wrong gate size



EECS 427 W07

Lecture 7

I. Sutherland, *et al*, Logical Effort, Academic Press, 1999 23

#### Limitations – Internal capacitance

- Capacitance in internal nodes
- Body effect



## **Limitations - Tapering**

- Optimal transistor sizes in stack are different (latest input at top of stack)
- What size is the best choice?



## Limitations – P/N ratio

- Why use P/N = 2?
  - Noise margins are balanced
  - Equal slopes
- How about P/N = 1.5?



- Decrease by 0.1  $\rightarrow$  Delay increased by 5%
- Increase by 0.1  $\rightarrow$  Delay decreased by 10%

## Limitations – Branching

• Assume that the size of the off-path gate tracks the size of the gate on-path



• Sizing one "critical" path of a branch may make the other paths worse

## Limitations - Slope

- Different slew rates
- Where is it best to insert additional size?

Cout

## **Limitations - Scaling**

• Scaling is not linear with width



## Sizing tool

- Tool: TILOS [Dunlop 89]
  - Start with all transistors of min. size
  - Find critical path (Optimize path)
  - Compute delays
  - Increase size of "critical path"
  - Size transistor with best sensitivity in critical path
  - Repeat
  - Goal of path distribution → All paths equal in length...

#### Area - Delay



# But the impact of process variations can be worse for the optimized paths

## Summary

- Logic Effort
  - Compute path effort, stage effort, sizes
  - Sizing on the back of an envelope!
- Limitations of method
  - Only min delay sizing
  - Tapering and internal stack effects
  - Branching effort not realistic
    - Unnecessarily constraints "side" gates to scale their sizes along with gate on critical path
    - Particularly a problem when you think of wire capacitance as "branching" load.