Lecture Overview

• Shifters
• Low-power ALU intro
• CAD4 due Tues
• Quiz next Thurs in class
 – Example to be posted soon
Some Insights from ISSCC 2009

- Intel → first fully static datapath for a high performance part in >20 years on Nehalem
 - 8 cores, pairs of caches/cores can be deactivated if defects occur
 - Top-level metal is 7-8um thick for extremely low resistance
 - Significant error correction capabilities
- Micro fuel cell deposited on chip, 4x4mm
- Cyborg moth radio – UWB, piezoelectric energy scavenging

Last Time

- Multipliers
 - Made primarily of arrays of adders
 - Can be very slow, must be carefully optimized
- Modified Booth recoding → map multiplier to a smaller encoded version and reduce partial product count by 2X
 - 2s complement follows naturally
Shift Types

- Arithmetic vs. logical shift (start with 1101)
 - Logical shift (baseline op for us)
 - Logical shift right by 1: 0110 \(\text{Shift in 0s for logical right shifts}\)
 - Logical shift right by 2: 0011
 - Logical shift left by 1: 1010 \(\text{Shift in 0s for left shifts}\)
 - Logical shift left by 2: 0100
 - Arithmetic shift (not baseline)
 - Arithmetic left shifts same as logical
 - Arithmetic right shift by 1: 1110 \(\text{Repeat sign of MSB for arithmetic right shifts}\)
 - Arithmetic right shift by 2: 1111

The Binary Shifter Concept

The Binary Shifter Concept
Barrel Shifter

Area Dominated by Wiring

Requires decoding of shift amount given in instruction word

4x4 barrel shifter

Only 1 shift bit high at any time

\[\text{Width}_{\text{barrel}} \approx 2 \, p_m \, N \]

N is max shift width (15 for us), \(p_m \) is metal pitch
Logarithmic Shifter

\[A_3 \rightarrow Sh1 \rightarrow B_3 \]
\[A_2 \rightarrow Sh2 \rightarrow B_2 \]
\[A_1 \rightarrow Sh4 \rightarrow B_1 \]
\[A_0 \rightarrow Sh4 \rightarrow B_0 \]

0-7 bit Logarithmic Shifter

\[\text{width}_{\text{log}} \cdot p_m \left(2^K + \left\{ \frac{1}{2^1} + \frac{1}{2^2} + \cdots + \frac{1}{2^K} \right\} \right) = p_m \left(2^K + 2^{K-1} \right) \]
\[K = \log_2 N \]
Other Spins on Logarithmic Shifters

- \(\log_4 \) instead of \(\log_2 \)
 - Advantage: Fewer stages of pass transistors
 - Disadvantage: must re-encode the control bits
 - Ex: 16 bits \(\rightarrow \) 4 stages of pass transistors for \(\log_2 \) vs. only 2 stages for \(\log_4 \)
- Can use CMOS transmission gates instead of NMOS pass transistors
- Rotate instruction – could be an ISA addition
 - 11010101 \(\rightarrow \) rotate right by 5 bits \(\rightarrow \) 10101110
- Reverse order shifters – do the big shifts first
 - Helpful because the big shifts have larger wire capacitances
 - Elmore delay is reduced by having large caps charged through the least resistance (fewest pass transistors)

Active Power Reduction

\[
P \sim \alpha \cdot C_L \cdot V_{swing} \cdot V_{DD} \cdot f \quad E \sim \alpha \cdot C_L \cdot V_{swing} \cdot V_{DD}
\]

- Reducing load capacitance
 - Technology scaling
 - Gate sizing, logic minimization, better placement tools
 - Logic families (pass transistor logic, …)
- Reducing supply voltage
 - Quadratic impact on power
 - Impact on delay – how to maintain throughput?
- Reducing frequency – performance penalty
- Reducing switching probability (\(\alpha \))
 - Architecture
 - Glitching power reduction (15-20%)
Glitching in Static CMOS Networks

- Gates have a nonzero propagation delay resulting in spurious transitions or glitches (hazards)
 - glitch: node exhibits multiple transitions in a single cycle before settling to the correct logic value

![Gate Diagram]

<table>
<thead>
<tr>
<th>ABC</th>
<th>X</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit Delay

Glitching in a Ripple Carry Adder

![Adder Diagram]

![Voltage Waveform Graph]
Balanced Delay Paths to Reduce Glitching

- Glitching is due to mismatches in path lengths in a logic network
- If all input signals of a gate change simultaneously, no glitching occurs

Equalize the lengths of timing paths through logic

Circuit-Level Activity Encoding

Conditional inversion coding for buses:
If more than ½ of bits switch, switch the inverse set to save power

Increases delay due to encode/decode elements
Clock Gating

- Most popular method for power reduction of clock signals and functional units
- Turn off clock to idle functional units
 - Ex. floating point units
 - Need logic to generate \textbf{disable} signal
 - Increases complexity of control logic
 - Consumes power
 - Timing critical to avoid clock glitches at OR gate output
 - Additional gate delay on clock signal
 - OR gate can replace a buffer in the clock distribution tree

Summary

- Barrel shifters are area-intensive but have only 1 pass transistor per path
 - Lots of junction capacitance though
- Log shifters are more versatile for wider data
 - Various choices: log base, reverse order, pass transistor vs. T-gate, buffering
- Low-power design
 - Can focus on reducing any # of things from switching activity to cap to voltage
 - Extremely important today; everyone cares about power