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EECS 452 Midterm Exam 
Winter 2012 

 
Name: ____________________________________    unique name: _______________ 
 
  
Sign the honor code:  
   
I have neither given nor received aid on this exam nor observed anyone else doing so. 

 
 
___________________________________ 
 

 
Scores: 

# Points 
Section I /40 

Section II /30 
Section III /30 
Total       /100 
  
  
  
  
  

 
NOTES: 

• Open book, open notes. 
• There are 8 pages including this one. 
• Calculators are allowed, but no smart phones, laptops,  or other wireless devices are 

allowed. 
• You have 120 minutes for the exam. 
• Be sure to show work and explain what you’ve done when asked to do so. You will 

not receive partial credit without showing work. 
• In the context of the exam you are to assume all signed numbers are two’s complement 

numbers. 
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Section I -- Short answer 40 points 
 
 

1) A 8 bit binary adder adds two values 0xA5 and 0x64  allowing overflow without saturation. 
What is the result (in Hexadecimal and Decimal) of the addition in the accumulator of this 
adder if the two input values are [4] 

 
 Hex                      Decimal 
     
a) Unsigned binary numbers:    __0x09_____       ___9_______ 

 
b) 2’s complement binary numbers:   __0x09_____        ___9_______ 

 
c) Unsigned Q4 binary numbers:       __0x09_____       ____0.5625__ 

 
d) Signed (2’s complement) binary Q4 numbers __0x09_____        ____0.5625__ 

 
 
 

2) Express the signed decimal fraction -0.625 in the following (Hex or binary) format [2]  
 
a) 8 bit two’s complement Q7:    ___0xB0_____ 

 
b) 8 bit two’s complement Q3:    ___0xFB_____ 

 
 

3) The result of multiplying two 16 bit two’s complement Q15 numbers together is a (put a 
check on the line next to the correct answer) [4] 

 
a) 16 bit Q15 number:     ___________ 

 
b) 32 bit Q30 number:     ____X_____ 

 
c) 32 bit Q15 number:     ___________ 

 
d) None of the above:      ___________ 

 
 

4) A 16 bit quantizer achieves a post-quantization SNR of 60dB. If you only needed attain a 
specification (spec) of 30dB post-quantization SNR could you reduce the number of bits in 
the quantizer  to12 bits and still statisfy the spec? Why or why not? [6] 

 
Yes, you can achieve the spec. From Lecture notes (Lec 6, p 26) you will recall that 
adding one additional bit to a quantizer increases the signal to quantization noise ratio 
(SQNR) by 6dB. Therefore the effect of reducing a quantizer by 4 bits is to decrease the 
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SQNR by 6*4 =24dB. Thus with 12 bits we would achieve a SQNR of 36dB which is 
above the spec of 30dB. 

5) A digital spectrum analyzer of a continuous time signal uses discrete sampling and a 512 
point FFT. If the frequency spacing in the FFT spectrum is to be at most 100Hz what is the 
maximum sampling frequency that the analyzer can handle? [6] 
 
The frequency spacing in Hz corresponding to the indices of an N-point FFT is Fs/N. 
Therefore to attain a spacing of less than 100Hz with a 512 point FFT we require Fs be less 
than N*100 =51.2kHz. 

 

6) A certain filter has the pole zero constellation shown below. Is this an FIR or an IIR filter? 
What is the filter order? Is is lowpass, highpass, bandpass, or none of the above? [6] 

 

 
 
This pole constellation has 6 poles and 8 zeros so it must correspond to an IIR filter. The 
order of the filter is the number of poles and the number of zeros (either or both answers 
would be acceptable), i.e. order 6 or order 8. The filter is not lowpass nor is it highpass due to 
the zeros at 0degrees. 90degrees and 180degrees, corresponding to digital frequencies 
f=0,1/4,1/2 respectively. Either of the  answers “bandpass” or “none of the above” would be 
acceptable here. 
 

7) The ADC of a DSP system samples an input signal at 48,000 samples/sec  sampling rate. 
The signal is processed by dropping every even sample and sending only the odd samples 
to the DAC. Assume that the DAC inserts 1/24 msecs between each sample.  If the input 
were a sinusoid at frequency 8kHz what would be the output  of the DAC assuming no 
quantization error and an ideal reconstruction filter? [6] 

 
This question confused a many students. The key to solving this correctly is to remember that 
once the signal is digitized by the ADC the original sampling frequency is irrelevant, you just 
have an integer indexed sequence.  The DAC synthesizes its own output period without 
accounting for the sampling rate at the ADC – ADC and DAC operate independently in a 
CODEC. So here’s the solution. As the 8kHz sinusoid is sampled at 48kHz by ADC there are 



4 
 

1/48 msecs between each sample of the original sinusoid. Therefore there are 1/24 msecs 
between each even sample of the original sinusoid.  Therefore, since the DAC inserts 1/24 
msecs between each of the samples, which correspond to the even samples since the odd ones 
have been dropped, the output is exactly the input, except sampled at half the sample rate, i.e. 
24kHz instead of 48kHz. Therfore, as there is no aliasing of the input sinusoid at this sample 
rate,  the output is a sinusoid at 8kHz – identical to the input except perhaps for some delay 
due to processing time.    
 

8) The counter below uses 3 D flip flops. Draw the timing table indicating the states of the 
counter over the first 8 clock cycles (assume initial state is 000). What are the signal 
activity levels (α1, α2 and α3) at the outputs Q2, Q1, Q0 of the counter? What is the total 
power dissipation of the counter assuming that the logic voltage is Vd=5V, the clock rate is 
fclk=1MHz and the outputs of each flip flop see the same capacitance C=10pF? [6] 

 
 
The timing table is drawn below (assuming it started from  initial state 000). The cycle time 
of the counter, which is a 3 register Johnson counter, is 6 clock cycles  so all that we need to 
do is count the number of transitions per counter cycle in order to find the signal activity 
levels. There are 2 transitions per counter cycle  so therefore α1= α2=α3=2/6=1/3. The total 
power dissipation is therefore 3Pff where Pff is the power dissipated by a single flip flop. 
Using the formula we developed in class Pff=C(Vd)2(1+α3/2)fclk which is 10*10-12*(25)* 
(1+1/2)*106=375µW. Therefore the total power dissipated is 3Pff=1.125mW. 
 

Clk Q2 Q1 Q0 
1 1 0 0 
2 1 1 0 
3 1 1 1 
4 0 1 1 
5 0 0 1 
6 0 0 0 
7 1 0 0 
8 1 1 0 
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Section II – longer answers 30 points 
 
1) You wish to implement a filter on a 16 bit DSP chip that runs at 250MHz  to do audio signal 

filtering. On this DSP chip the number of clock cycles required for a complex vector multiply 
of two 128-element vectors is 1500 cycles. The number of cycles for a 128 point complex 
FFT or IFFT (with scaling) is 2500 cycles. The number of cycles required for computing the 
output of a 16th order  IIR filter is 1000 cycles [10].  
 
This question also seemed confuse many students. The question is similar to Q8 of Prelab 6 
that asked you about throughput of FFT computations by considering the number of CPU 
cycles needed for FFT processing of audio stream. It then related the number of cycles to the 
maximum sampling rate that the CPU could handle if it were operating at a given clock 
frequency. This problem is a variation on Q8 of Prelab 6 that also asks you about memory 
requirements and IIR filters. There are many reasonable answers to the memory requirements 
part of a) and b), depending on how the IIR and FFT were implemented, and many students 
got the answer correct but with quantitatively different answers.   
 
a) One implementation of the filter is to use a 16th order IIR filter whose transfer function 

approximates the desired transfer function in both phase and magnitude.  How many 
words of memory (16 bit words) are required to store the coefficients and the filter states 
in order implement this filter? What is the maximum sampling rate Fs such that the filter 
computation can be performed in real time, i.e. that the computation for the previous 
sample is completed before the next sample comes in? [4] 
 
A general 16th order IIR filter can be implemented as cascade of 8 biquad filters. Each 
biquad has up to 4 coefficients and 4 associated internal states. Without any additional 
structure, e.g. specification that certain coefficients are zero, and assuming that an 
internal state (data) and a coefficient each take up one 16 bit word of memory,  this 
means that the number of words of memory per biquad is 4. Therefore, a 16th order IIR 
filter requires 2*4*8=64 words of memory. In the case that the filter is all pole this drops 
to 32 words.  The answer can change if there is specialized buffer for internal states or if 
there is pipelining or other architectural variants. The maximum sample rate is calculated 
from the given information that 1000 cycles are required for computation of each output 
and that the CPU clock rate is Fclk=250MHz.  The sampling period Ts has to be greater 
than the time required to compute one IIR output: Ts>1000/Fclk or Fs=1/Ts<250kHz. 
 

b) Another implementation of the filter is to use a DFT filter bank that works as follows. 
Perform a 128 point FFT  on the 128 previous  input samples. Then multiply these 
complex values by the desired transfer function. Finally,  perform the IFFT on the result.  
How much memory is required to store the coefficients and the filter states in order 
implement this filter? What is the maximum sampling frequency that can be used so that 
the filter computation can be performed in real time, i.e., so that the filter output can be 
computed  on the previous 128 block of samples before the next sample comes in? [4] 
 
The 128 point DFT filterbank might need memory for the FFT and IFFT complex twiddle 
factors, the 128 complex transfer function values, and  the 128 input and output data 
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points. If we do not use the fact that IFFT and FFT coefficients are complex conjugates 
of each other, we would need to assign 2*128 complex words for these coefficients, 128 
complex words for the transfer function, and 2*128 words for the input and output data. 
This works out to 1024 16 bit words (16 bits for real and imaginary parts) assuming that 
the input and output data are real valued. As for the maximum sampling rate, the 
sampling period Ts has to be greater than the time required to compute one  output 
which, using the given information, will be 2500 CPU cycles for computing the FFT, 
1500 CPU cycles for the complex multiply of the FFT output and the transfer function, 
and 2500 CPU cycles for computing the IFFT, or a total of 6500 CPU cycles. Hence    
Ts>6500/Fclk or Fs=1/Ts<38.4kHz.  
 

 
c) If you had a fast enough clock rate to handle all the computations in real time and enough 

memory storage capacity, are there any advantages to using the DFT filterbank as 
compared to the IIR filter? [2] 
There are several advantages to the DFT filterbank solution, despite the increase memory 
and computation time requirements. The principal advantage is that you can implement 
virtually any transfer function, not just the IIR ratio of polynomials in Z. For example 
you can implement a TF with magnitude |H(f)|= exp(-f2/a), where a is positive – this is 
called a Gabor filter, which is not a ratio of polynomials. Thus you can directly 
synthesize any phase and magnitude characteristic you like, and in particular linear phase.  
 

 
2) Consider the discrete time signal x[n]=0.5*cos(2π f1 n)+sin(2π f2 n),  n=1,…,8.  [10] 

 
a) What is the DFT of x[n] if f1=1/4 and f2=3/8? Carefully plot the magnitude and phase 

being sure to label and quantify the ranges of the axes. [5] 
We compute the N-point DFT for N=8 as follows. Rewrite x[n] as  

 
x[n]=0.5*cos(2π f1 n)+cos(2π f2 n-π/2), 

 
As f1 and f2 are 2/8 and 3/8, respectively, they are integral multiples of 1/N and we know 
that the DFT will consist of only four non-zero components located at DFT indices 2,3,N-
3,N-2.  and with magnitude and phases listed below (N=8) 
 
DFT Frequency Magnitude Phase 
2/N N/4 0 
3/N N/2 -π/2 
5/N N/2 π/2 
6/N N/4 0 
 
 

b) If x[n] corresponded to a continuous-time signal x(t)  sampled at 48kHz what frequencies 
(Hz) are present in the original signal x(t)? [3] 
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Here you need to use the simple relation that the Hz frequency F associated with a digital 
frequency f is of the form: F=f*Fs, where Fs is the sampling frequency. Therefore 
F1=1/4*48kHz=12kHz and F2=3/8*48kHz=18kHz. 

. 
c) Is there spectral leakage in this example? Why or why not? [2] 

 
There is no leakage since the frequencies F1 and F2 are integral multiples of Fs/N

  
 

3) The input output relation of a particular linear time invariant digital filter is: [10] 
 

𝑦[𝑛] = �  (−1)𝑘𝑥[𝑛 − 𝑘]
𝑁

𝑘=0

 

 
a) What is the transfer function H(z) associated with the filter? Plot poles-zeros constellation of 

H(z) in the complex plane. [3] 
The impulse response of the filter is ℎ[𝑘] = (−1)𝑘for k=0,1,…N and zero otherwise. The 
transfer function is the Z-transform 𝐻(𝑧) = 1 − 𝑧−1 + 𝑧−2 − ⋯+ (−𝑧−1)𝑁. 
Let’s specialize to the case N=1 for simplicity. Then 𝐻(𝑧) = 1 − 𝑧−1 = 𝑧−1(𝑧 − 1) which 
has a single root at z=1. Thus, on the complex Z plane there is a zero at z=1 and a pole at 
z=0. In the general case of N>1, there are N zeros on the unit circle at angles k/(N+1) for 
k=0,1, ...,N. Note that if you did this problem by using the geometric series to obtain 
𝐻(𝑧) = (1 − (−𝑧−1)𝑁+1 )/(1 + 𝑧−1) (which is correct),  you can fool yourself into thinking 
that there is a pole at z = -1. However, since (1 − (−𝑧−1)𝑁+1 ) = (1 + 𝑧−1)(1 − 𝑧−1 +
𝑧−2 − ⋯+ (−𝑧−1)𝑁  there is actually a pole-zero cancelation, so there is actually no pole at 
z=-1. 
 

b) Compute and plot the magnitude and phase frequency response as a function of the digital 
frequency variable f of the DTFT. [3] 
Use the fact that the impulse response of the filter can be written as ℎ[𝑘] = (−1)𝑘 =
exp (−𝑗𝜋𝑘). Then the DTFT of h is H�ej2πf� = ∑ (−1)𝑛𝑒𝑗2𝜋𝑓𝑛N

{n=0} = ∑ 𝑒𝑗2𝜋(𝑓−12)𝑛N
{n=0} .  

Now, if you recall Lecture 8 p. 7 where we introduced the moving average filter, the DTFT 
above is identical to the DTFT of the moving average filter except that it is shifted by 
frequency ½. Therefore, from the formula in the lecture notes,  we immediately obtain the 
form for the transfer function (as usual H(f) is shorthand for H�ej2πf�) 

H(f) = (𝑁 + 1)−1 �exp (−𝑗𝜋𝑁 �𝑓 −
1
2
�)� sin�𝜋(𝑁 + 1) �𝑓 −

1
2
�� /sin (𝜋(𝑓 −

1
2

)) 

 
c) Is this filter linear phase? What is its group delay? [2] 

This filter is linear phase and its group delay is N/2. 
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d) Is this filter LP, BP, HP or none of the above?  [2] 
The passband of the magnitude transfer function depends on N. If N>1 then it is a highpass 
filter centered at frequency f=1/2. If  N=0 it is an all-pass filter and if N=1 it has a broad 
passband that extends from f=1/2 to near f=0.       
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Section III Longer answers 30 points 

 
1) A waveform synthesizer uses the DDS system above to generate  a periodic waveform using a 4 

bit waveform table containing 16 samples of a single period of the linear ramp waveform s[n]=n, 
n=0,1,2 … 15. [15] 
 
a)  Assume FTV=1 and BA = BFTV.  What should the clock frequency fs  (Hz) be in order for the 

output waveform frequency to be equal to 10kHz?  Plot three or four periods of the analog 
output over time. Be careful to label your axes and indicate the amplitude and period of the 
waveform on your plot.[7] 
The output frequency is equal to f0=FTV fs/2BFTV

. As FTV=1 and BFTV=4, fs must be 
f02BFTV=10*16kHz=160kHz. The analog output will be a sawtooth waveform with period 
equal to 1/10,000 or 0.1msec.  
 

b) Now we modify the DDS by increasing BFTV and connected the table and to the register in 
the following non-standard manner. We set BFTV=BA+1 and make the upper 2 MSB’s of the 
register address the 2 MSB’s of the waveform table and the lower 2 LSB’s of the register 
address the 2 LSB’s of the waveform table (see diagram below). What is now the output 
waveform frequency in terms of the clock rate fs (Hz), BFTV and BA?  What should the clock 
frequency be for the waveform frequency to be 10kHz?  Plot a single period of the output 
assuming the linear ramp waveform you assumed in part a). [8] 
This part of the question was problematic for many students. The key to seeing the solution is 
to draw a timing diagram, which many of the successful students did. You should note that 
because of the fact that the middle bit is not addressing the table, there will be a single 
repetition of the  first 4 values in the table (the LSB’s b0 and b1) before each increment of 
the MSB’s b2 and b3  in the table. As there are four increments of the MSB’s before the 
counter cycles back to 0, this single repeated set of values will occur 4 times in a cycle. The 
output waveform frequency is given by the same formula as used in part a)  except that now 
BFTV=5 bits instead of 4 (the time to cycle the counter is now 25). Therefore to attain an 

R
egister 

W
aveform

 table 

A
D

C
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output frequency of 10kHz we require 2 times the frequency we had before, that is 
fs=320kHz. 
 
    

 
 
 

The plot of the waveform using this value of fs is drawn below.  
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2) Consider the digital filter below that produces an output y[n] given input x[n]. [15] 
 
 
a) Is this filter FIR or IIR? What is the filter order? 
It is IIR since it is composed of recursive filters arranged in parallel: a recursive first order IIR 
filter at top, a biquad IIR filter in the middle, and a biquad IIR  filter at the bottom. The filter is a 
Direct Form II implemention of the transfer function 
(http://www.dsprelated.com/dspbooks/filters/Parallel_Second_Order_Signal_Flow.html) 
y[n]=x[n]+0.5^3x[n-3]-0.9^5y[n-5] as a parallel bank of real first and second order digital filter 
sections.  

 
 . 

  
b) Assuming that that the input is scaled appropriately is this filter implementable in 16 bit 

Q(14) arithmetic? Could it be implemented in 16 bit Q(15) with  a small modification? If so 
how would you modify it? 

The filter can be implemented in Q(14) since the maximum magnitude coefficient value is less 
than 2. It could be modified by dividing by the coefficients 1.4562 and -0.8100 by 2 prior to 
summation and then multiplying them by 2 after summation (assuming that the signal was scaled 
so that it never caused overflow after multiplication by 2 at this internal state. 

 
 
 

c) Can this filter be implemented with biquads? How many biquads would be necessary?  
The filter as given is implemented with 2 biquads and one single stage, as shown in the diagram. 
Unlike in the filters you constructed in lab 5, this filter is in parallel form. To implement the 
finite precision analysis and overflow protection procedure you would need to convert to series 
cascade form. 

 
 
 
 
 
 
 

http://www.dsprelated.com/dspbooks/filters/Parallel_Second_Order_Signal_Flow.html
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