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2.3 SAMPLING BANDPASS SIGNALS

Although satisfying the majority of sampling requirements, the sampling of
low-pass signals, as in Figure 2-6, is not the only sampling scheme used in
practice. We can use a technique known as bandpass sampling to sample a con-
tinuous bandpass signal that is centered about some frequency other than
zero Hz. When a continuous input signal’s bandwidth and center frequency
permit us to do so, bandpass sampling not only reduces the speed require-
ment of A/D converters below that necessary with traditional low-pass sam-
pling; it also reduces the amount of digital memory necessary to capture a
given time interval of a continuous signal.

By way of example, consider sampling the band-limited signal shown in
Figure 2-7(a) centered at f, = 20 MHz, with a bandwidth B = 5 MHz. We use
the term bandpass sampling for the process of sampling continuous signals
whose center frequencies have been translated up from zero Hz. What we’re
calling bandpass sampling goes by various other names in the literature, such
as IF sampling, harmonic sampling{2], sub-Nyquist sampling, and under-
sampling(3]. In bandpass sampling, we’re more concerned with a signal’s
bandwidth than its highest frequency component. Note that the negative fre-
quency portion of the signal, centered at —f,, is the mirror image of the positive
frequency portion—as it must be for real signals. Our bandpass signal’s high-
est frequency component is 22.5 MHz. Conforming to the Nyquist criterion
(sampling at twice the highest frequency content of the signal) implies that the
sampling frequency must be a minimum of 45 MHz. Consider the effect if the
sample rate is 17.5 MHz shown in Figure 2-7(b). Note that the original spectral
components remain located at 1f,, and spectral replications are located exactly
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Figure 2-7 Bandpass signal sampling: (a) original continuous signal spectrum; (b)
sampled signal spectrum replications when sample rate is 17.5 MHz.



Sampling Bandpass Signals 31

at baseband, i.e., butting up against each other at zero Hz. Figure 2-7(b) shows
that sampling at 45 MHz was unnecessary to avoid aliasing—instead we’ve
used the spectral replicating effects of Eq. (2-5) to our advantage.

Bandpass sampling performs digitization and frequency translation in a
single process, often called sampling translation. The processes of sampling
and frequency translation are intimately bound together in the world of digi-
tal signal processing, and every sampling operation inherently results in spec-
tral replications. The inquisitive reader may ask, “Can we sample at some still
lower rate and avoid aliasing?” The answer is yes, but, to find out how, we
have to grind through the derivation of an important bandpass sampling re-
lationship. Our reward, however, will be worth the trouble because here’s
where bandpass sampling really gets interesting.

Let’s assume we have a continuous input bandpass signal of bandwidth
B. Its carrier frequency is f_ Hz, i.e., the bandpass signal is centered at f, Hz, and
its sampled value spectrum is that shown in Figure 2-8(a). We can sample that
continuous signal at a rate, say f, Hz, so the spectral replications of the positive
and negative bands, Q and P, just butt up against each other exactly at zero Hz.
This situation, depicted in Figure 2-8(a), is reminiscent of Figure 2-7(b). With
an arbitrary number of replications, say m, in the range of 2f - B, we see that

2f. - B
-

mf. =2f.-B or f. = (2-6)

In Figure 2-8(a), m = 6 for illustrative purposes only. Of course m can be any
positive integer so long as f, is never less than 2B. If the sample rate f,, is in-
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Figure 2-8 Bandpass sampling frequency limits: (@) sample rate f. = (2f_ - B)/6;
(b) sample rate is less than f..; (C) minimum sample rate f. < f;..
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creased, the original spectra (bold) do not shift, but all the replications will
shift. At zero Hz, the P band will shift to the right, and the Q band will shift to
the left. These replications will overlap and aliasing occurs. Thus, from Eq.
(2-6), for an arbitrary m, there is a frequency that the sample rate must not ex-
ceed, or

fos ————--zf;": BT -—-——*—zf;": B . (2-7)

If we reduce the sample rate below the f, value shown in Figure 2-8(a), the
spacing between replications will decrease in the direction of the arrows in
Figure 2-8(b). Again, the original spectra do not shift when the sample rate is
changed. At some new sample rate f., where f,. < f,, the replication P” will
just butt up against the positive original spectrum centered at f, as shown in
Figure 2-8(c). In this condition, we know that

2f. +B
m+1

(m+1)f.=2f.+B or f.= (2-8)
Should f,. be decreased in value, P’ will shift further down in frequency and
start to overlap with the positive original spectrum at f, and aliasing occurs.
Therefore, from Eq. (2-8) and for m+1, there is a frequency that the sample
rate must always exceed, or

2f. +B
m+1

fo2 (2-9)

We can now combine Egs. (2-7) and (2-9) to say that f, may be chosen any-
where in the range between f.. and f,, to avoid aliasing, or

2f. +B
m+1

el , (2-10)
m

where m is an arbitrary, positive integer ensuring that f, > 2B. (For this type of

periodic sampling of real signals, known as real or first-order sampling, the

Nyquist criterion f, > 2B must still be satisfied.)

To appreciate the important relationships in Eq. (2-10), let’s return to
our bandpass signal example, where Eq. (2-10) enables the generation of
Table 2-1. This table tells us that our sample rate can be anywhere in the
range of 22.5 to 35 MHz, anywhere in the range of 15 to 17.5 MHz, or any-
where in the range of 11.25 to 11.66 MHz. Any sample rate below 11.25 MHz
is unacceptable because it will not satisfy Eq. (2-10) as well as f, 2 2B. The
spectra resulting from several of the sampling rates from Table 2-1 are shown
in Figure 2-9 for our bandpass signal example. Notice in Figure 2-9(f) that
when f equals 7.5 MHz (m = 5), we have aliasing problems because neither
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Table 2-1 Equation (2-10) Applied to the Bandpass Signal Example

m (2f —B)Im Q2f.+B)(m+1) Optnmum sa mplmg rate
1 35.0 MHz 22.5 MHz 22.5 MHz
2 17.5 MHz 15.0 MHz 17.5 MHz
3 11.66 MHz 11.25 MHz 11.25 MHz
4 8.75 MHz 9.0 MHz -
5 7 0 MHZ 7 5 MHz -
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Figure 2-9 Various spectral replications from Table 2-1: (a) f. = 35 MHz

() 1, = 2.5 MHz (©) f, = 17.5 MHz (d) f, = 15 MHz (e) f = 11.25 MHz:
(f) £, = 7.5 MHz.
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the greater than relationships in Eq. (2-10) nor f, 2 2B have been satisfied. The
m = 4 condition is also unacceptable because f, > 2B is not satisfied. The last
column in Table 2-1 gives the optimum sampling frequency for each accept-
able m value. Optimum sampling frequency is defined here as that frequency
where spectral replications do not butt up against each other except at zero
Hz. For example, in the m = 1 range of permissible sampling frequencies, it is
much easier to perform subsequent digital filtering or other processing on the
signal samples whose spectrum is that of Figure 2-9(b), as opposed to the
spectrum in Figure 2-9(a).

The reader may wonder, “Is the optimum sample rate always equal to
the minimum permissible value for f, using Eq. (2-10)?” The answer depends
on the specific application—perhaps there are certain system constraints that
must be considered. For example, in digital telephony, to simplify the follow-
on processing, sample frequencies are chosen to be integer multiples of
8 kHz[4]. Another application-specific factor in choosing the optimum f is the
shape of analog anti-aliasing filters[5]. Often, in practice, high-performance
A /D converters have their hardware components fine-tuned during manufac-
ture to ensure maximum linearity at high frequencies (>5 MHz). Their use at
lower frequencies is not recommended.

An interesting way of illustrating the nature of Eq. (2-10) is to plot the
minimum sampling rate, (2f +B)/(m+1), for various values of m, as a function
of R defined as

_ highest signal frequency component _ f +B/2

R
bandwidth B

(2-11)

If we normalize the minimum sample rate from Eq. (2-10) by dividing it by
the bandwidth B, we get a bold-line plot whose axes are normalized to the
bandwidth shown as the solid curve in Figure 2-10. This figure shows us the
minimum normalized sample rate as a function of the normalized highest fre-
quency component in the bandpass signal. Notice that, regardless of the value
of R, the minimum sampling rate need never exceed 4B and approaches 2B as
the carrier frequency increases. Surprisingly, the minimum acceptable sam-
pling frequency actually decreases as the bandpass signal’s carrier frequency
increases. We can interpret Figure 2-10 by reconsidering our bandpass signal
example from Figure 2-7 where R = 22.5/5 = 4.5. This R value is indicated by
the dashed line in Figure 2-10 showing that m = 3 and f,/B is 2.25. With B = 5
MHz, then, the minimum f, = 11.25 MHz in agreement with Table 2-1. The
leftmost line in Figure 2-10 shows the low-pass sampling case, where the
sample rate f, must be twice the signal’s highest frequency component. So the
normalized sample rate f /B is twice the highest frequency component over B
or 2R.
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Figure 2-10 Minimum bandpass sampling rate from EqQ. (2-10).

Figure 2-10 has been prominent in the literature, but its normal presen-
tation enables the reader to jump to the false conclusion that any sample rate
above the minimum shown in the figure will be an acceptable sample
rate[6-12]. There’s a clever way to avoid any misunderstanding[13]. If we
plot the acceptable ranges of bandpass sample frequencies from Eq. (2-10) as
a function of R we get the depiction shown in Figure 2-11. As we saw from
Eq. (2-10), Table 2-1, and Figure 2-9, acceptable bandpass sample rates are a
series of frequency ranges separated by unacceptable ranges of sample rate
frequencies, that is, an acceptable bandpass sample frequency must be above
the minimum shown in Figure 2-10, but cannot be just any frequency above
that minimum. The shaded region in Figure 2-11 shows those normalized
bandpass sample rates that will lead to spectral aliasing. Sample rates within
the white regions of Figure 2-11 are acceptable. So, for bandpass sampling,
we want our sample rate to be in the white wedged areas associated with
some value of m from Eq. (2-10). Let’s understand the significance of Figure
2-11 by again using our previous bandpass signal example from Figure 2-7.

Figure 2-12 shows our bandpass signal example R value (highest fre-
quency component/bandwidth) of 4.5 as the dashed vertical line. Because
that line intersects just three white wedged areas, we see that there are only
three frequency regions of acceptable sample rates, and this agrees with our
results from Table 2-1. The intersection of the R = 4.5 line and the borders of
the white wedged areas are those sample rate frequencies listed in Table 2-1.
So Figure 2-11 gives a depiction of bandpass sampling restrictions much
more realistic than that given in Figure 2-10.

Although Figures 2-11 and 2-12 indicate that we can use a sample rate
that lies on the boundary between a white and shaded area, these sample
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rates should be avoided in practice. Nonideal analog bandpass filters, sample
rate clock generator instabilities, and slight imperfections in available A/D
converters make this ideal case impossible to achieve exactly. It's prudent to
keep f. somewhat separated from the boundaries. Consider the bandpass
sampling scenario shown in Figure 2-13. With a typical (nonideal) analog
bandpass filter, whose frequency response is indicated by the dashed line, it’s
prudent to consider the filter’s bandwidth not as B, but as B , in our equa-
tions. That is, we create a guard band on either side of our filter so that there
can be a small amount of aliasing in the discrete spectrum without distorting
our desired signal, as shown at the bottom of Figure 2-13.

We can relate this idea of using guard bands to Figure 2-11 by looking
more closely at one of the white wedges. As shown in Figure 2-14, we’d like
to set our sample rate as far down toward the vertex of the white area as we
can—lower in the wedge means a lower sampling rate. However, the closer
we operate to the boundary of a shaded area, the more narrow the guard
band must be, requiring a sharper analog bandpass filter, as well as the
tighter the tolerance we must impose on the stability and accuracy of our
A/D clock generator. (Remember, operating on the boundary between a
white and shaded area in Figure 2-11 causes spectral replications to butt up
against each other.) So, to be safe, we operate at some intermediate point
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Figure 2-13 Bandpass sampling with aliasing occurring only in the filter guard
bands.
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Figure 2-14 Typical operating point for f, to compensate for nonideal hardware.

away from any shaded boundaries as shown in Figure 2-14. Further analysis
of how guard bandwidths and A/D clock parameters relate to the geometry
of Figure 2-14 is available in reference [13]. For this discussion, we’ll just state
that it’s a good idea to ensure that our selected sample rate does not lie too
close to the boundary between a white and shaded area in Figure 2-11.

There are a couple of ways to make sure we’re not operating near a
boundary. One way is to set the sample rate in the middle of a white wedge
for a given value of R. We do this by taking the average between the maxi-
mum and minimum sample rate terms in Eq. (2-10) for a particular value of
m, that is, to center the sample rate operating point within a wedge we use a
sample rate of

fun =2 [2fc B+2fc+B]=fc-B/2+)g+B/2_ (2-12)

m m+1 m m+1

Another way to avoid the boundaries of Figure 2-14 is to use the following
expression to determine an intermediate f;. operating point:

fs, = Ao (2-13)
Modd

where m_, is an odd integer[14]. Using Eq. (2-13) yields the useful property

that the sampled signal of interest will be centered at one fourth the sample

rate (f,./4). This situation is attractive because it greatly simplifies follow-on

complex downconversion (frequency translation) used in many digital com-

munications applications. Of course the choice of m_,, must ensure that the
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Figure 2-15 Intermediate f; and f_, operating points, from Eqs. (2-12) and
(2-13), to avoid operating at the shaded boundaries for the band-
pass signal example. B=5 MHz and R = 4.5.

Nyquist restriction of f.. > 2B be satisfied. We show the results of Egs. (2-12)
and (2-13) for our bandpass signal example in Figure 2--15.

2.4 SPECTRAL INVERSION IN BANDPASS SAMPLING

Some of the permissible f, values from Eq. (2-10) will, although avoiding
aliasing problems, provide a sampled baseband spectrum (located near zero
Hz) that is inverted from the original positive and negative spectral shapes,
that is, the positive baseband will have the inverted shape of the negative half
from the original spectrum. This spectral inversion happens whenever m, in
Eq. (2-10), is an odd integer, as illustrated in Figures 2-9(b) and 2-9(e). When
the original positive spectral bandpass components are symmetrical about
the f, frequency, spectral inversion presents no problem and any nonaliasing
value for f, from Eq. (2-10) may be chosen. However, if spectral inversion is
something to be avoided, for example, when single sideband signals are
being processed, the minimum applicable sample rate to avoid spectral inver-
sion is defined by Eq. (2-10) with the restriction that m is the largest even inte-



