Pre-Lab Questions

Ql.

Q2.

Q3.

Q4.

Qs.

Q6.

Which GPIO pin is connected to each of the four LEDs? (Red, Blue, Yellow and Green). Use the
schematic not the table as there appears to be a typo in the table. In general, it is a good policy
to trust the schematic above other references.

What are the names and memory locations of the registers you’ll need to use to set the GPIO
pins associated with the LEDs to be outputs?

For each of the four LEDs indicate which bit number of which register you’ll need to write to in
order to set that LED’s GPIO pin to be an output.

Assuming the GPIO pins have been setup as outputs, indicate the register names, their
addresses and which bits you'll need to write to what value in order to turn on the LEDs.

Answer the following questions. Assume all values are 16-bit unsigned where bit 15 is the
most-significant bit and bit O the least significant.
a. What is the value of the number where bit 4 is a 1 and all other bits are zero? Provide
your answer in both decimal and hex.
b. What is the value of the number (1<<4)? Provide your answer in both decimal and
hex.
If x=0x2222, what is the hex value of x after the line x| =(1<<4)?
Write C code which sets bit 7 and 8 of the variable x.
Write C code which clears bit 1 of the variable x using the &= operator.
Write C code which toggles bit 13 of the variable x using the A operator.

-~ o a0

Provide the code below with the blanks correctly filled in.

/*
* main.c

* Author: GSI
*/

#include <usbstk5515.h>
#include <stdio.h>

//Addresses of the MMIO for the GPIO out registers: 1,2
#define LED_OUT1 *((ioport volatile Uintl6*)__blank a)
#define LED_OUT2 *((ioport volatile Uintlé*)_blank b)
//Addresses of the MMIO for the GPIO direction registers: 1,2
#define LED_DIR1l *((ioport volatile Uintlé6*)__blank c)
#define LED_DIR2 *((ioport volatile Uintlé*)_blank d)

//Toggles LED specified by index Range 0 to 3
void toggle_ LED (int index)
{

if(index == 3) //Blue

LED_OUT1 = LED_OUT1 ~ (1<<(__blank e_));
else if(index == 2) //Yellow(ish)

LED OUT1 = LED_OUT1 ~ (1<<(__blank £));
else if(index == 1) //Red

LED_OUT2 = LED_OUT2 ~ (1<<(__blank g_));

Q7.

Q8.

else if(index == 0) //Green
LED_OUT2 = LED OUT2 ~ (1<<(__blank h_));
}

//Makes the GPIO associated with the LEDs the correct direction; turns them off
void My LED_init()
{

LED DIR1 |= blank i ;
LED_DIR2 |= blank j ;
LED_OUT1 |= blank k ; //Set LEDs 0, 1 to off
LED_OUT2 |= blank 1 ; //Set LEDs 2, 3 to off

}

void main (void)
{
Uintlé value;
USBSTK5515_init(); //Initializing the Processor
My LED_init();
while (1)
{
printf ("Which LED shall we toggle(0, 1, 2, or 3)?\n");
scanf ("%d", &value) ;
toggle_ LED (value) ;

Consider the zigzag.c code found on the lab website. It draws a zigzag pattern on the screen.
Draw, freehand, what you expect this code to generate on the LCD. We are particularly
concerned with how many zigzags you expect to see. You may find it helpful to read the
document SSD1306 128 x 64 Dot Matrix OLED/PLED Segment/Common Driver with Controller
(you can find it with a web search). Hint: ignore the 0SD9616_send function for now, focus on
the state of the top and bottom arrays. Page 25 of the document will also be helpful. Keep in
mind this document refers to a LCD with 8 pages but our LCD has 2 pages.

Say you have a 50-entry sine table (that is the table[x] has the value for sin(2r*x/50)). Say you
output each value for 1ms, then after you do the last value (table[49] in this case) you loop
around and output table[0] again. Obviously the sine waves will be a bit choppy...
a. What is the frequency of the sine wave you’d generate?
b. What if you instead held each table entry for two samples in a row (2ms). What would
the frequency be?
c. What if you instead drove every other table entry for 1ms (so only table entries 0, 2, 4,
etc.). What would the frequency be?
d. Describe what you’d need to do to generate a 1Hz frequency sine wave.
e. Describe what you’d need to do to generate a 15Hz frequency sine wave.

In-lab & Post-lab Questions

Ql.

Q2.

Q3.

Q4.

Qs.

Q6.

Q7.

What values do you see at memory locations 0x1c0a as you toggle LED 3 on and off? Does
toggling LED1 on and off cause that memory location to change? Why or why not?

What about memory location 0x1c0b? What values do you see there as you toggle LED 3 and
off? Does that value change? Why or why not?

Rewrite the code for the “if(index == 3)” case of toggle_LED using these functions rather than
the way we did it. What would you say an advantage of using the pointers was rather than this
library code? What is an advantage of using the library code rather than the pointers?

The C5515 has a built-in LCD controller. The folks who designed the C5515 eZDSP Stick chose
not to use that built-in controller and instead used an external 12C controller.
a. Explain, in a few sentences, what 12C is.
b. Look at the OSD9616_send function. What does it do?
¢. In main.c what do you think the purpose of the “top” and “bottom” arrays are? Try to
clear (turn off) the entire display. Try to make the entire display turn on.
d. Inthe prelab you were asked to draw the zigzag figure by hand. Does your answer
match what was displayed? What’s different if anything?
e. Thedisplay is only 16x96 even though the code might lead you to believe it is 16x128.
Which parts of top and bottom aren’t being displayed?
f. After the printf statement there are a bunch of 0SD9616_send function calls. What do
you suspect their purpose is?

At what voltage levels does our converter start saturating? (Do not drive more than 8V peak-
to-peak to the board please; it can likely handle it, but...). Don’t worry about being overly
precise (within 0.2V will be fine).

Go to the C5515_Lib folder and examine the function in usbstk5515_led.c which initializes the
ULEDs. Copy that function and describe what is happening line-by-line for that function. You
will need to look at the #defines in usbstk5515.h and usbstk5515_led.h file to truly understand
what’s going on there.

Go into the AIC_func.c file and provide a line-by-line description of the AIC_write2 function.

