EECS 452 Lab 7:
SPI 125 on C5515 and DE2-70

In this lab you will work more with the SPI and 12S protocols. Specifically, you will learn how to send
data between the PMODs and the C5515 and how to send data between C5515 and DE2-70 devices.
Finally, you will implement an application involving the C5515, the DE2-70, and real time audio
processing.

Note: In this lab and in general, when using communication protocols it is often necessary to set the
binary state of configuration registers that decide multiple communication settings. For example, the
I2SCTRL registers are 16 bits long and decide enable, mono/stereo, data delay, DSP/12S format, etc. A
best practice is to #defines for each of these configurations and then finally take the logical OR of them.
This improves readability and helps when debugging or changing parameters later on.

1. Introduction to SPI

The SPI (Serial Peripheral Interface) is 4-pin port that a master device and a slave device can send
data across.
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Figure 1: SPI port / signal reference on master and slave device

The SPI bus specifies four logic signals:
e SCLK: serial clock (output from master)
e MOSI: master output, slave input (output from master)
e  MISO: master input, slave output (output from slave)
e SS:slave select (active low, output from master)

C5515

In the first part of this lab the C5515 stick will act as the master device and the DE2-70 will act as the
slave device. Communication between master and slave is bi-directional. The key differences between
master and slave are that the master is responsible for setting the clock for communication and that
multiple slaves connect to a single master.

We need to go through some initializations to configure the C5515 to act as master device.
e Enable the SCLK output
e Set the SCLK frequency
e Configure slave chip select polarity
e Set character length
e Setinterrupts



Step 1: Enable the SCLK output

First we need to enable the C5515 SCLK output. The SPI Clock Control Register (SPICCR) contains the
clock enable that we can set to 1. (See Page 25 of SPI Manual)
Step 2: Set the SCLK frequency

Next we need to set the SCLK frequency. The C5515 SPI module contains a programmable clock
divider that cuts the SPI Input Clock by some fraction and outputs the reduced frequency clock as the
SCLK. The SPI Input Clock passed to the module is the same clock the C5515 CPU runs on of 100 MHz.

To ensure the SPI module communicates properly we need the SPI Input Clock frequency to be at
least four greater than the SCLK frequency. (Refer to Section 2.5 on pages 12-14 in the SPI Manual to
find out why)

To set the SCLK frequency, we need to configure the SPI Clock Divider Register (SPICDR) to set the
CLKDV value. Whatever the CLKDV value is, the frequency of the SPI Input Clock will be divided by CLKDV
+ 1. For example, setting the CLKDV value to 3 will divide the SPI Input Clock by 4 and the SCLK will have
frequency 25 MHz.

e Remember that this is the minimum amount we need to divide the input clock by, so the value

of CLKDV should be >3.

e  When CLKDV is odd, the duty cycle of SCLK is 50%

e When the CLKDV is even, the duty cycle of SCLK is more complicated (See Section 4.1 on pg. 25).
Step 3: Configure slave chip select polarity

The SPI module on the C5515 allows for up to four slave devices (referenced as slave 0, 1, 2, and 3).
For the first part of this lab you will focus on communicating between the C5515 and just one slave DE2-
70. Then later on we will experiment with communicating between multiple slave devices.

The SPI Device Configuration Registers (SPIDCR1 & SPIDCR2) store the communication
configurations for each slave device. Refer to Figure 2 for the register locations for slave device 1 or
consult the manual on pages 26 & 27 for information on configuration locations for all four slave
devices.

Figure 15. Device Configuration Register 1 (SPIDCR1)
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LEGEND: R'W = Read/Write; R = Read only; -n = value after reset
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12-11 | DD1 0-3h | Data delay for chip select 1 pin (SPI_CS1).

0 First SPI_CLK edge is delayed 0.5 clock cycles from SPI_CS1 assertion.

1h First SPI_CLK edge is delayed 1.5 SPI clock cycles from SPI_CS1 assertion.
2h First SPI_CLK edge is delayed 2.5 SPI clock cycles from SPI_CS1 assertion.
3h First SPI_CLK edge Is delayed 3.5 SPI clock cycles from SPI_CS1 assertion.

10 CKPH1 Clock phase for chip select 1 pin (SPI_CS1). The clock phase bit, in conjunction with the clock
polarity bit (CKP1), controls the clock-data relationship between master and slave.

0 When CKP1 =0, data shifted out on falling edge, input captured on rising edge. When CKP1 =1,
data shifted out on rising edge, input captured on falling edge.

1 When CKP1 =0, data shifted out on rising edge, input captured on falling edge. When CKP1 =1,
data shifted out on falling edge, input captured on rising edge.

a CSP1 Polarity for chip select 1 pin (SPI_CS1).
0 Active low.
1 Active high.
8 CKP1 Clock polarity inactive state for the clock pin during accesses to chip select 1.
0 When data is not being transferred, a steady state low value is produced at the SPI_CLK pin.

1 When data is not being transferred, a steady state high value is produced at the SPI_CLK pin.
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Figure 2: SPIDCR1 that stores communication parameters for slave 0 and 1



Together, the clock phase and clock polarity configurations specify the SPI mode of communication
(See Section 2.5 for SPI modes). For our basic initial experiment we will focus on the basics and use SPI
Mode 0: active low clock polarity and data shifted out on falling edge, input captured on rising edge. SPI
modes are important to understand as they are incompatible with each other so if two devices are
using different SPI modes they will not understand each other. When you are trying to use a device
that uses SPI, be sure to know what SPI mode it uses.

Notice that the C5515 stores these four configurations for each of the four slave devices
independently, giving us the flexibility to communicate with multiple slave devices with different
configurations from one master. We will attempt exactly this later on in the lab. For our first
experiment, we only need to worry about setting the chip select polarity of the slave device we want to
communicate with.

Data and status registers

Before discussing the last step of setting interrupts, we should look at how the C5515 stick handles

receiving and propagating data.

Figure 9. Data Shift Process
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Figure 3: SPIDAT shift register

The C5515 uses SPIDAT1 and SPIDAT2 together as one 32-bit shift register. SPl incoming data from
slave devices will be shifted into the SPIDAT1 register at the LSB, and SPI outgoing data will be shifted
out of the SPIDAT2 from the highest significant bit. Both registers shift contents leftward. Notice that to
propagate some data, our program needs to place that data in SPIDAT2 and it will be transferred out
one character at a time until the entire frame is transferred. A character refers to some collection of 1-
32 bits. A frame refers to the entire set of characters. It is also important to note that while Figure 3
makes it seem as if SPIDAT1 and SPIDAT2 are separate entities, the C5515 will read/write from them as
two halves of a continuous 32-bit shift register. If character length exceeds 16 bits, then the MOSI data
spills over to SPIDAT1’s MSBs and the MISO data comes in and fills up all of SPIDAT1 and the LSBs of
SPIDAT2.

There are two registers SPICMD1 and SPICMD?2 that allow us to set frame and character size. We can

Figure 17. Command Register 1 (SPICMD1)
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LEGEND: R'W = Read/Write; R = Read anly; -n = value after reset

Table 9. Command Register 1 (SPICMD1) Field Descriptions

Bit Field Value | Description
15 FIRQ Frame count interrupt enable.
0 No interrupt generated at the end of the frame count.

1 Interrupt generated at the end of the frame count
14 CIRQ Character interrupt enable.
0 No interrupt generated at the end of the character transfer

1 Interrupt generated at the end of the character transfer.
13-12 | Reserved 0 Reserved.

11-0 | FLEN 0-FFFh | Frame length bits. These bits are used to specify the length of entire transfer. 3

The total number of characters transferred equals FLEN + 1

For example, if FLEN = 63, a frame consists of a total of 64 characters.

Figure 4: SPICMD1



access SPICMD1 during initialization to set the number of characters in a frame. As shown in Figure 4,
we need to set FLEN to do this. For a frame size of 1 character for our first experiment, we will use a
frame size of 1 character, so we’d leave FLEN at 0. To set the character interrupt we’ll toggle CIRQ to 1.

We will not set SPICMD?2 during initialization, but instead change it multiple times during
program runtime. This is because whereas SPICMD1 was responding for static settings, SPICMD2
stores settings that are more dynamic in nature (for example, we need to be able to switch between
reading and writing modes during runtime).

Figure 18. Command Register 2 (SPICMD2)

15 14 13 12 1 8 7 3 2 1 0
| Reserved | csnum | Reserved | CLEN | rsv | cwo |
R0 RW-0 R0 RW-0 R0 RW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. Command Register 2 (SPICMD2) Field Descriptions

Bit Field Value | Description
15-14 | Reserved 0 Reserved.
13-12 |CSNUM 0-3h | Device select Sets the active chip select for the transfer.

0 Chip select 0 is active.

1h Chip select 1 is active.

2h Chip select 2 is active.

3h Chip select 3 is active.

11-8 | Reserved 0 Reserved

7-3 |CLEN 0-1Fh | Character length. Sets the transfer size of the individual transfer elements from 1 to 32 bits.
The character length is set to CLEN + 1.

For example, if CLEN = 7, the character length is set to 8 bits.

2 Reserved 0 Reserved.

1-0 CMD 0-3h | Transfer command bits. These bits specify the type of transaction being used.
0 Reserved.
1h Read.
2h Wiite.

3h Reserved.

Figure 5: SPICMD2
Step 4: Set interrupts
Finally, once we’ve configured the C5515 to fire interrupts after every successful character transfer
using SPICMD1, we need to capture those interrupts in functions. The way to do this is exactly what we
did in previous labs. It’s good to note that the interrupt fires when we succeed in sending a message
over SPI.

DE2-70

For this lab we will use the DE2-70 as a slave device to the C5515 master (the C5515 stick cannot act
as a slave). Later on in these experiments we will show how to use the DE2-70 as master to other DE2-70
devices.

In the lab the C5515 Breakout Board simplifies how to connect the ports on the C5515 stick to the
DE2-70. The Breakout Board exposes the SPI pins on the C5515 and the GPIO pins on the DE2-70 to
jumper connections between the two devices. Please consult the schematic on DE270Break.pdf to
understand how the GPIO pins are mapped to the breakout board when connecting the jumper cables.

Like on the C5515, we need to go through some initializations to configure the C5515 to act as slave
device. However, whereas Tl gives us dedicated registers that we can understand and bit toggle, on the
DE2-70 we need to implement our own modules to handle the signals going across the GPIO pins.

e Detect the SCLK

e Detect the slave select

e Collect the slave MOSI signal
e C(Create the MISO signal



Step 1: Detect the SCLK
Being the slave device, the DE2-70 does not set the communication frequency. Instead, our DE2-70
must check the signal on the GPIO pins for the rising and falling edges of the master SCLK.

Step 2: Detect the slave select

If we use SPI mode 0, then the master will set slave select GPIO low when it starts to communicate
and set slave select GPIO high when it is done communicating. As a slave device, the DE2-70 must be
aware of when communication starts, if communication is active, and when communication stops. Just
like with the SCLK, it is important then to use a shift register to track the transition of the slave select
GPIO from high to low and vice versa.

Step 3: Collect the MOSI signal

We must constantly check if slave select is active, and if it is active, depending on the
communication mode, we must collect what comes across the MQOSI channel into a shift register. When
slave select goes from active to low, then we must pick up what we collected in the shift register into
some wire to output as the MOSI message.

Step 4: Create the MISO signal

To send messages to the master device, there is some wire to store the message. When the slave
select becomes ‘active’ then we have to ‘load’ that message to some shift register. Whatever goes
across the MISO line should be our message from MSB to LSB, so we can just update the shift register
such that this behavior is achieved. After all the bits are sent over, we can just send O’s.

2. Introduction to I12S

The second serial bus we will use is the Inter-IC Sound (IS or 12S) interface on the C5515 and the
DE2-70. Unlike SPI, the C5515 can behave as the ‘slave’ device, accepting an external clock set by
another device. By using both the SPI and the 12S on the C5515, we can achieve asynchronous
communication between the C5515 and another device. This will be useful in projects where the C5515
processes information collected by another device, such as the DE2-70. Imagine a camera is sending
data to the DE2-70 at 27 MHz clock rate. If you’'re only using SPI, the C5515 must be the master so you
need to manipulate the video data rate to conform to the SPI master’s data rate. In contrast, with 125
you can set the DE2-70 as master and then send video data to the C5515 at the rate you receive them
from the camera. Flexibility like this is one reason 12S is very valuable. In this lab we will demonstrate
how to use the C5515 as 12S slave to the DE2-70. Then we will discuss how to use the C5515 as 12S
master.

C5515 as I12S slave

Configuring and using 12S on the C5515 as a slave device is similar to setting up SPl. We need to
configure register states to set up communication, and during communication we need to alter certain
registers as well. Note also that the Breakout Board exposes the ports for only 12S0 and 1252, so in
practice for each USBSTICK you will have 2 12S modules available.



Table 1-1. 128 Signal Descriptions

Name Signal Description
125n_CLK INPUT fOUTPUT 125 Clock
125n_FS INPUT fOUTPUT 125 Frame Sync Clock
125n_DX QUTPUT 125 Data Transmit
125n_RX INFUT 125 Data Receive

Figure 6: Pin signals for 12S on C5515
Step 1: Enable the system clock
Any 12S module requires the system clock to operate. On the C5515 the 12S module idles by default
and does not get a system clock. To enable the system clock reaching the 12S module, we zero out the
appropriate bit on the Peripheral Clock Gating Configuration Register 1 (PCGCR 1). This must be done for
each 12S module we use.

Step 2: Update [2SnCTRL Register

Each 1252 module in the C5515 has a 16 bit 12Sn Control Register, where the majority of
configuration settings are assigned. For our exercises in this lab we will need to configure: enabling 12S,
mono or stereo mode, data delay, word length, clock polarity and frame sync polarity, master or slave
mode, and communication format (DSP or 12S/Left-justified).

To help you understand what some of these settings mean in terms of the signals that result from
different configuration options, take a look at Figure 7 and 8 below:
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Figure 7: 12S mode, MONO = 0, CLKPOL = 0, FSPOL = 0, DATADLY =0, FRMT =0
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Figure 8: DSP mode, MONO = 0, CLKPOL = 0, FSPOL = 0, DATADLY =0, FRMT =1

The ‘DATA’ blocks here represent data captured on the receive line.A few things are important to
notice about these two settings and the signals they correspond to. First, notice that in 12S format
(FRMT = 0) must go with ‘stereo’ mode (MONO = 0), and the 50% duty cycle of the frame sync signal
means ‘mono’ mode is not supported. Under the DSP format (FRMT = 1), we can do either ‘mono’ or



‘stereo’ mode. Under the 12S format, the left channel is transferred under low frame sync state, and
when frame sync becomes high then right channel is transmitted. Under DSP, if we’re using ‘stereo’, the
left channel is transmitted followed immediately by right channel when frame sync is low.

In addition, understand that the CLKPOL and FSPOL can both either be set to 0 ‘default’ or 1
‘inverted’. Both of the figures are results of FSPOL = 0, and CLKPOL = 0. Under 12S format, if FSPOL =1,
then the left channel is received when FS is high, and the right channel is received when FS is low. Under
DSP format, FSPOL = 1 would mean left and right channels being valid with FS is high. So we can see that
FSPOL lets us know when our left and right channels are valid relative to the 12S_FS signal. We can also
see that CLKPOL tells us when a bit is valid relative to the 12S_CLK signal. Finally, note the 1-bit data
delay in the difference in ‘gaps’ on Figure 8. The ‘gaps’ indicate the MSB transmitted and the MSB
received.

Beyond these basic settings, the I2SCTRL register also stores configurations for Data Pack Mode
(PACK) and sign extension (SIGN_EXT) and word length (WDLNGTH). If we turn on data packing (PACK =
1), then interrupts for I12S receiving data will figure every 32 bits vs. every WDLNGTH bits. So for
example, if WDLNGTH = 16, then receive events would occur every 16 bits received. However, if we turn
on data packing, then receive events would occur half as much. In addition, with data packing on-chip
memory is used to store the received values in 32-bit buffers. DMA events occur every 32 bits, and using

the on-chip memory is more efficient.
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Figure 9: Without data packing (PACK = 0), WDLNGTH = 4h
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Figure 10: With data packing (PACK = 1), WDLNGTH = 4h

Finally, we can also turn on sign extension. C5515 will attempt to fill up the DMA first, and then sign
extend every element to the next multiple of 16. Note the order of operations here: C5515 will fill up
the on-chip memory and then sign extend after the memory has been populated.



We've covered the configure I2SCTRL and if we were using the C5515 as a slave device, the only
thing left to do is enable interrupts and configure the 12SINTMASK to configure our interrupts. Note that
we cannot run in both ‘stereo’ and ‘mono’ mode at the same time.

7 B 5 4 3 2 1 0
[ Reserved [ xwitsT [ xwmmMON |  RcvsT | RCVMON FERR OUERR
RO RIW-0 RW-0 RW-0 RAW-0 RAW-0 RIW-0

LEGEND: RW = Read/Write; R = Read only; -n = value after reset

Tabhle 1-24. 128 Interrupt Mask Register (I2SINTMASK) Field Descriptions

Bit | Field Value | Description
15-6 | Reserved 0 Reserved
5 XMITST Enable stereo left/right transmit data interrupt. Used only when the MONO bit 12 in the I2SSCTRL

register = 0 (Stereo mode). This bit is cleared on read.
0 Disable stereo TX data interrupt.
1 Enable stereo TX data intermupt.

4 XMITMON Enable mono left transmit data interrupt. Used only when the MONO bit 12 in the I2SSCTRL
register = 1 (Mono mode). This bit is cleared on read
0 Disable mono TX data interrupt.
1 Enable mono TX data interrupt.
3 RCVST Enable stereo left/right receive data interrupt. Used only when the MONO bit 12 in the I2SSCTRL

register = 0 (Stereo mode). This bit is cleared on read.
0 Disable stereo RX| data interrupt.

1 Enable stereo RX data interrupt.
2 RCVMON Enable mono left receive data interrupt. Used enly when the MONO bit 12 in the I2SSCTRL register
=1 (Mono mode). This bit is cleared on read.
0 Disable mono RX data interrupt
1 Enable mono RX data interrupt.
1 FERR Enable frame sync error.
0 Disable frame-synchronization error interrupt.
1 Enable frame-synchronization error interrupt.
0 OUERR Enable overrun or underrun condition.
0 Disable overrun/underrun emor interrupt.
1 Enable overrunfunderrun error interrupt.

C5515 as I12S master

When we want to use the C5515 as an 12S master device, we need to go through the same steps we
took to set the C5515 as an 12S slave device and then go one step further in setting the 12SnRATE
register. Remember that as a master the C5515 has two more responsibilities: setting the frame sync
(12S_FS) and clock (12S_CLK) signals. The I2SnRATE register sets up the dividers used in deriving both
signals.

Table 1-18. 12Sn Sample Rate Generator Register (I28SRATE) Field Descriptions

Bit | Field Value | Description
156 | Reserved 0 Reserved
53 |FSDIV Divider to generate 125n_FS (frame-synchronization clock). The [2Sn_CLK is divided down by the

configured value to generate the frame-synchronization clock. (Has no effect when 12S is
configured as slave device).

0 Divide by 8
1h Divide by 16
2h Divide by 32
3h Divide by 64
4h Divide by 128
5h Divide by 256

6h Reserved
Th Reserved
20 | CLKDIV Divider to generate 125n_CLK (bit-clock). The system clock (or DSP clock) to the 125 is divided

down by the configured value to generate the bit clock. (Has no effect when 25 is configured as
slave device).

1] Divide by 2.
1h Divide by 4.
2h Divide by 8.
3h Divide by 16.
4h Divide by 32
5h Divide by 64
6h Divide by 128.
7h Divide by 256.

Figure 11: I2SnRATE register



Notice that the FSDIV is dividing down the 12S_CLK rate, which is in turn dividing down the CPU clock
rate. So how much you decide to divide down the 12S_CLK to get I12S_FS should be based on your word
length and ‘stereo’ or ‘mono’ mode.

I12S on the DE2-70

Implementing 12S on the DE2-70 is very similar to implementing SPI on the DE2-70. If we want to
create an 12S slave we need to catch the signals, use shift registers to read in data on the RX port and
push out data using a shift register on the TX port. We base our decisions off of what we see on the
I12S_FS and 12S_CLK lines.

Implementing an 12S master is a bit more involved because we need to worry about the FS and CLK

signals. We can use counters and combinational statements to divide up the clock to generate our FS
signal. The same is true for generating the CLK signal.

3. Pre-lab

These exercises will prepare you for working with SPl on the C5515 and the DE2-70. All the
information you need is either in the background section or the SPI Manual.
Q1. Write a C function initSPI that initializes the C5515 for communication with slave device 1
with:
e Atafrequency of 1 MHz
e SPI communication mode 1
e Interrupts at the end of every frame
e Frames consist of 1 characters

Q2. Write the C functions readSPI and writeSPI that collect data from and send data to a slave
device over SPI, respectively. Please use the following function starter code. Assume you
are using SPI1 with character length 16.

//readSPlI
Uuintl6é readSP1(){
//your code here

}

//writeSPI
void writeSPI(Uintl6 data){
//your code here

}

Q3. The following is a segment of Verilog code that is involved in SPI communication. Look over
the following code and describe in your own words what is happening. What mode is the
DE2-70’s master device communicating with?

reg [2:0] SSELr;
always @(posedge clk)
SSELr <= {SSELr[1:0], SSEL};



Q4.

Q5.

Q6.

Q7.

Q3.

wire SSEL_active = ~SSELr[1];

always @(posedge clk)
begin
iT(~SSEL_active)
bitcnt <= 4"b0000;
else
begin
iT(SCK_risingedge)
begin
bitcnt <= bitcnt + 4°b0001;
MOSIshift <= {MOSIshift[14:0], MOSI_data};
end
end
end

Write a snippet of code that does what the above code does but using SPI mode 3.

Look back at Figures 7 and 8. You’re given that in both diagrams the CLKPOL register is set to
0, and know that CLKPOL tells us when to know a received bit is valid relative to the 12S_CLK
signal. Using those two figures and this knowledge, answer the following question: under
CLKPOL =0, FRMT =1, what event on the 12S_CLK tells us a bit received is valid? What about
under FRMT =0?

Let’s say you are using 12S and the WDLNGTH is 4 bits and you’re not using data packing.
Every time you receive an interrupt, you concatenate the data on the receive register to a
chunk of a 32 bit number. Explain how you could be more efficient using the I2SCTRL
register.

Write a C function initializel2S() that defines configurations and updates the necessary
registers to set up the C5515 as 12S slave in mono mode, DSP format, with active low
relative to the frame and expecting to receive on the falling edge of the 12S_CLK.

Let’s say you have a word length of 16 bits and you’re in ‘stereo’ mode. What should your
FSDIV be?

4. In-lab

Part 1: C5515 with Pmods over SPI

In a previous lab we worked with the Pmods (A/D 1 and DA2) on the DE2-70. However, in certain
projects students needed to use the Pmods directly with the C5515. These projects might involve
collecting analog signals such as voltages or audio through the Pmod A/D 1 and / or outputting data of
some form through the Pmod DA2. Understanding how to interface Pmods with the C5515 is a good
starting point for using SPI in any project.

Both Pmod devices use SPI to communicate. The C5515 will supply the clock for them as the master
device. First we will attempt to collect analog data from the C5515 using the Pmod AD 1. The first task is
to connect the hardware. Consult the C5515BreakOut.pdf schematic found on the course website and
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the Pmod AD 1 website for the pin assignments. Connect the Pmod AD 1 to SPI 1 on the C5515 Breakout
Board. You can find a connector board in the lab to simplify the connection. Note: do not to apply the
blue jumpers on the C5515 breakout whenever appropriate.
After you’ve connected the boards to each other, the next step is to create your project in Code
Composer Studio.
1. Like in previous labs, import the Starting_point.zip project into your workspace and rename
it to Lab7G1.
2. Download the Lab7_Files.zip file from CTools, extract, and copy and paste all of the files
within the folder ‘SPI’ to your Lab7G1 project.
3. Add your code from initSPI and readSPI you created in the pre-lab to the appropriate places
in main.c.
4. In the file spi_definitions.h fill out the incomplete define lines using given definitions
5. Modify you readSPI and initSPI to use these definitions.
6. Inthe main function, implement a while loop that forever reads from SPI 1 and writes the
input out to the AIC on both channels.
7. Connect the Pmod AD 1 to SPI 1 (be careful with orientation). Note that although the Pmod
AD1 uses SPI to send out digital data, it has J1 interface that isn’t immediately matching to
the SPI1 connector on our C5515 Breakout Board. Use jumpers and refer to the
C5515Breakout.pdf and AD1 links on the website. Also note that SPI exposes 1 TX and 1 RX
port. You will only use the RX port for this part, and feed in one of the ‘Data’ pins from the
AD1. You pick which ‘Data’ pin to use.
8. Connect the function generator outputting a waveform to the Pmod AD1 J2 side.
9. Attach the stereo out from the USBSTICK to the scope and see what you’re reading in.
Note: If you are trying to use the AIC and getting linker errors, remember to examine the C5500
Linker File Search Paths and make sure they match with the projects from Lab 2.

Q1. You will not immediately see a sine wave from the AIC. The immediate reason is that the AIC is
outputting values too small and close to 0. Why might this be? (Think about the input from the
Pmod. How many bits does the Pmod send across?) What does this imply about how you need
to change the input from the Pmod?

Modify your code (you only need to add 1 line) so that the AIC outputs a sinusoidal waveform.
Remember you can adjust the DC offset of the input waveform to adjust for any truncation.

G1. Show your GSI your sine wave.

Next we’re going to use the Pmod DA2 instead of the code chip to output signals. We'll start by
outputting a very simple ramp function from the Pmod DA2. Again, use the reference documents from
the class website to connect the Pmod DA2 to SPI 2 on the C5515 Breakout Board. Do not detach the
Pmod AD1 from SPI 1 because we will use it again soon.

In the same function you used for G1, copy over the writeSPI function you wrote in the Pre-lab.
Modify the code so that it uses SPI 2 instead. Use bit masking to implement a ramp waveform in the
while loop of your main function. You may need to experiment with bit masking before you see an
output signal. (Hint, how many bits did the Pmod AD1 send over?)

Q2. How many bits do you need to use for bit masking?
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You may see a waveform not exactly a ramp with ‘gaps’ in between. What might be the issue? (Hint:
it probably isn’t your main function or your writeSPI function. Remember that the C5515 holds
communication configurations for each SPI slave that are independent of each other) Modify your code
so that you see the ramp waveform. You might need a bit of trial and error.

G2. Show your GSI your ramp wave.

Q3. What SPI mode does the Pmod DA2 use?

Finally, we’re going to use the Pmod DA2 instead of the codec chip to output our waveform. At this
point, the Pmod AD1 should still be connected to SPI 1 and the Pmod DA2 should be connected to SPI 2.
In your while loop, write what you receive from the Pmod AD 1 directly out to the Pmod DA2.

You will notice that the simplest implementation will probably not work, because without interrupts
nothing pre-empts the CPU to get out of ‘read’ or ‘write’ mode so it becomes stuck in which ever is
called first. We will use interrupts to get around this issue. Copy and paste the code from
‘G3Additions.txt’ to your main.c.

G3. Show your GSI the C5515 outputting a sine wave from the Pmod AD1 using the Pmod DA2.

Q4. You may have noticed the ‘steps’ in the outputted waveform, the time quantization. How
might you reduce this quantization effect?

Q5. How much delay (approximately, microseconds) exists between the input and output signals?
Part 2: SPI Communication using the C5515 as master and DE2-70 as slave

First, create a new Starting_point project named ‘Lab7G4’ and copy over the functions you wrote for
G3. Add a while loop to the main function that constantly requests you enter a number and writes it
through SPI 2 via writeSPI and prints out values from readSPI over SPI 2 to the console. Make sure this
code debugs properly.

Next, locate the Quartus folder/project ‘fpgaSpiSlave’ in Lab7_Files.zip and launch it in Quartus.
Within this project you’ll see that we’ve instantiated a module called ‘spiSlave’. Take a look at the top-
level code and try to understand what is going on, what hardware connections to set up, and what you
should expect to see.

In the spiSlave module we’ve left a few lines of code missing for you to fill out to demonstrate your
understanding. After you complete them you should be able to compile and upload to the DE2-70. Also
remember to check your readSPI and writeSPI functions to make sure they are accessing the
appropriate SPI channel!

G4. Show your GSI communication working in both directions. Your entered value from the C5515
console should show on a Hex display on the DE2-70, and the C5515 should print off the value
of switches from the DE2-70.

Q6. Notice how the mosiDataRegister is updated in the spiSlave code, how data shifts to
the left. What does this tell us about how we expect the MOSI message to come through?
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Part 3: 12S with the DE2-70 as master and C5515 as slave

In this part we will use another serial protocol, 125, to communicate between the C5515 and the
DE2-70. The advantage of understanding 12S for these devices is that using 12S we can achieve
asynchronous data transfers. Think of this way: if we just talked across one SPI channel, then the DE2-70
can only talk to the C5515 when the C5515 is speaking. However, if we had one SPI channel and another
I2S channel, the DE2-70 can talk to the C5515 in one frequency and the C5515 can talk back to the DE2-
70 in another frequency. This is particularly important in projects that involve one device to report
analysis on data to another device in an asynchronous fashion.

Now we will attempt to implement an 12S slave on the C5515 and an 12S master on the DE2-70.
Create a new CCS project from Starting_point and rename it to ‘Lab7G5’. Go to your Lab7_Files folder
and locate the files in the subfolder ‘12S’. Copy all of those files to Lab7G5 project. In the 12S_slave.c and
main.c files you will see that there are blanks for you to fill out as before. In the 12S_slave.c you will
need to demonstrate a basic familiarity with the 12S specification and how it connects to communication
specs. In the main.c file, write some code that loops forever, asking the user for a number and printing
out what is received through 1252.

Now open up the Quartus project / folder I2SMASTER from Lab7_Files. Look over the code and
figure out what you expect to see during runtime and what hardware setup you need to prepare. Once
you get a basic understanding of it, fill out the portion marked ‘ADD CODE HERE...” to handle basic 0.
Check your hardware set up (again, use the Breakout documents on the site).

&5. Demonstrate your 12S master on the DE2-70 and the 125 slave on the C5515 communicating to
each other.
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