
EECS 452 – Lecture 5

Today: FPGA / Cyclone II overview.
The Altera DE2-70 board.
Aspects of the Verilog/SystemVerilog HDLs
Information relevant to lab exercise three.
Yet more information.

References: DE2-70 User Manual.
DE2-70 demonstrations, V10.
Altera Quartus II introductory course.
Verilog in One Day Tutorial.

Last one out should close the lab door!!!!

Please keep the lab clean and organized.

Design is where science and art break even. — Robin Mathew
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Lecture overview

▶ FPGA overview.

▶ Altera Cyclone II overview.

▶ The Terasic/Altera DE2-70 board.

▶ Altera’s Quartus II design software.

▶ Various aspects of Verilog/SystemVerilog.

▶ Code examples.

A significant part of learning is asking good questions. Or, in today’s world,
using well chosen search terms. For example, verilog tutorial or
verilog always block.

The links included in today’s lecture note are some of the ones that I came across
that I’ve found informative and useful. The ones shown in red are hot, click and
go. (However, not everything red is a link.)

My main goal today is to make you aware.

The links work today, but will they work tomorrow? — anon
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Free eBook
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Full Custom, ASIC, FPGA

Full Custom: design at the transistor level.

Application Specific Integrated Circuit: design using proved gate
libraries. Starting chip likely already has transistors on it.

Field Programmable Gate Arrary: interconnected configurable
logic blocks.

Ordered going down: decreasing cost, increasing ease to produce.

EECS 452 – Fall 2014 Lecture 5 – Page 4/143 Tuesday – September 16, 2014



What is a Field Programmable Gate Array (FPGA)?

From our viewpoint, (almost) unstructured logic that we can
sculpt (configure) to meet our needs.

In reality, a collection of small well de-
fined logic blocks, a highly configurable
interconnection network and a care-
fully designed clock distribution net-
work. Plus whatever other features that
a manufacturer might add to differenti-
ate product.

http://en.wikipedia.org/wiki/Field-programmable_gate_array
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FPGA organization

Field Programmable Gate Array
(reconfigurable logic)

Not shown are off-fabric block RAM, multipliers, DSP blocks, PLL, etc.

From rfneulink.com.
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Routing makes all things possible

Intel. Not a FPGA but it illustrates the importance of routing.

▶ First layers above
gates/transistors form
logic blocks or logic
elements.

▶ The next layers support
configuration of the
blocks.

▶ The higher layers are
programmable
interconnects.

▶ Equal delays from to
“the” clock to the gates
are all important,in the
chip design and in
design with the chip.
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Coming down the road (at us)

One chip — microcomputer and FPGA!

Altera Xilinx
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Cyclone II EP2C70 is used on the DE2-70

Table 1–1. Cyclone II FPGA Family Features (Part 1 of 2)

Feature EP2C5 (2) EP2C8 (2) EP2C15 (1) EP2C20 (2) EP2C35 EP2C50 EP2C70

LEs 4,608 8,256 14,448 18,752 33,216 50,528 68,416

M4K RAM blocks (4 

Kbits plus 

512 parity bits

26 36 52 52 105 129 250

Total RAM bits 119,808 165,888 239,616 239,616 483,840 594,432 1,152,00

0

Embedded 

multipliers (3)

13 18 26 26 35 86 150

PLLs 2 2 4 4 4 4 4

The DE2-70 uses the Cyclone II EP2C70 part in a 896 ball ball grid
array (BGA) package, speed grade 6 (fastest).

Documentation for the Cyclone II can be found at:

http://www.altera.com/literature/lit-cyc2.jsp
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Cyclone II FPGA layout

From Altera.
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Cyclone II logic element

This is the almost in “almost unstructured”.

The magic word is: configurable.
From Altera.
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Programmable interconnections

Programmable routing is a large part of configurable.

From Google Images.
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Clock distribution network

▶ Modern logic design is largely
based on the register transfer level
(RTL) paradigm.
http://en.wikipedia.org/
wiki/Register-transfer_level

▶ The state of a design is contained
in registers that are all clocked at
the same time.

▶ Between clock tics, combinatorial
logic is used to determine the next
contents of the registers.

▶ All registers need to be clocked at
the same instant to prevent
unwanted race conditions and
incorrect loading due to
propagation delays in the
combinatorial logic.

Design of VLSI Systems, Figure 5.5.
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DE2-70 RAM

The EP2C70 M4K blocks contain a total of 1,152,000 bits (144,000
bytes). Can’t necessarily use as one large block . . . routing
limitations.

Each LE contains a D-register that can be used as a one-bit
memory.

The Cyclone II does not support use of a LE’s LUT as memory.

Xilinx’s (but not Altera’s) LUTs support use as a 16 bit shift
register. A design making heavy use of bit-serial arithmetic likely
would choose a Xilinx FPGA over an Altera FPGA.
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M4K RAM

Off-fabric.
250 MHz max clock.
4608 bits (inc. parity).

4K×1
2K×2
1K×4
512×8
512×9
256×16
256×18
128×32 (not avail. true dual)
128×36 (not avail. true dual)

Table 2–7. M4K Memory Modes

Memory Mode Description

Single-port memory M4K blocks support single-port mode, used when 

simultaneous reads and writes are not required. 

Single-port memory supports non-simultaneous 

reads and writes.

Simple dual-port memory Simple dual-port memory supports a 

simultaneous read and write.

Simple dual-port with mixed 

width 

Simple dual-port memory mode with different 

read and write port widths.

True dual-port memory True dual-port mode supports any combination of 

two-port operations: two reads, two writes, or one 

read and one write at two different clock 

frequencies.

True dual-port with mixed 

width 

True dual-port mode with different read and write 

port widths.

Embedded shift register M4K memory blocks are used to implement shift 

registers. Data is written into each address 

location at the falling edge of the clock and read 

from the address at the rising edge of the clock.

ROM The M4K memory blocks support ROM mode. A 

MIF initializes the ROM contents of these blocks.

FIFO buffers A single clock or dual clock FIFO may be 

implemented in the M4K blocks. Simultaneous 

read and write from an empty FIFO buffer is not 

supported.

From Cyclone II documentation.
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Multipliers

EP2C70 has 150 embedded.
Off-fabric.

Use as:

300 9×9
150 18×18

CLRN

D Q

ENA

Data A

Data B

aclr

clock

ena

signa (1)

signb (1)

CLRN

D Q

ENA

CLRN

D Q

ENA
Data Out

Embedded Multiplier Block

Output
RegisterInput

Register

In addition, one can implement up to 250 16× 16 soft multipliers
using M4K memory blocks.

From Cyclone II documentation.
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Advantages of an FPGA

▶ Low (relatively speaking) development cost of a product.

▶ Parallel processing.

▶ Field upgrade capability.

▶ Short time to market.
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ASICs, FPGAs’ competition

Application Specific Integrated Circuits (ASICs) implement logic directly
making more efficient use of silicon.

▶ ASICs have very large non-recurring initial costs.

▶ ASICs per unit cost in volume is lower that that of FPGAs.

▶ The cross over point where FPGAs cost less than ASICS is about
100k to 200k units and is continually increasing.

▶ The time-to-market for FPGA designs is usually less than with ASICs.

▶ A FPGA can be configured in-situ in a customer’s unit. This allows
correcting design deficiencies and use of non-finalized standards.
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Who makes FPGAs?

▶ Xilinx, has approximately a 47% market share.

▶ Altera, has approximately a 41% market share.

▶ Both provide free Web editions of their basic design software for
use with their low end devices (where we live).

▶ Xilinx’s tool set is named ISE.

▶ Altera’s tool set is named Quartus II.

▶ Both are based on Eclipse and are very similar in use.

▶ Both support the Verilog, SystemVerilog and VHDL design
languages.
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The Terasic/Altera DE2-70

TV Decoder (NTSC/PAL)

50Mhz Oscillator

Expansion Header 2

SMA Extemal Clock

IrDA Transceiver

8Mbyte Flash Memory

8 Green LEDs

18 Toggle  Switches

7-Segment Displays

16x2 LCD Module

Altera USB Blaster

Controller chipset

Altera EPCS16

Configuration Device

USB Host/Slave

Controller

Audio CODEC

Power ON/OFF Switch

12V DC Power Supply

Connector

RUN/PROG Switch for

 JTAG/AS Modes

18 Red LEDs

Expansion Header 1

��	
���������
���

�������	���������

VGA 10-bit DAC

28Mhz Oscillator 2Mbyte SSRAM32Mbyte SDRAMx2 4 Push-button Switches

Ethernet 10/100M Controller

TV Decoder (NTSC/PAL) X2

PS2 Port

RS-232 Port

Ethernet 10/100M Port

USB Host Port

USB Device Port

USB Blaster Port

VGA Out

Video In 2Video In 1

Line InMic in Line Out

LockSD Card Slot
(SD Card Not Included)
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DE2-70 features

USB Blaster interface 2 Mbyte SSRAM

Two 32-Mbyte SDRAM 8-Mbyte Flash memory

SD Card socket SMA connector

16×2 LCD display 8 seven-segment LED digits

4 push button switches 18 toggle switches

18 red user LEDs 9 green user LEDs

50 MHz clock oscillator 28 MHz clock oscillator

24-bit audio CODEC line-in, line-out, mike-in jacks

VGA DAC (10-bit high speed) 2 TV Decoders

10/100 Ethernet Contoller RJ45 Ethernet connector

USB Hose/Slave USB type A and B connectors

PS/2 mouse/keyboard connector IrDA transceiver

2 40-pin expansion connectors recently phased out

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=53&No=226
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The DE2-70 power on default

▶ Used to built confidence that the board works.

▶ The default is contained in an EEPROM on the DE2-70 and is
automatically loaded into the DE2-70’s FPGA on power on.

▶ Generates VGA logo display.
▶ Blinks LEDs
▶ Initializes the audio CODEC.
▶ and much more.

▶ Contained in EEPROM. Source code is available on the Terasic
DE2-70 support web pages.

▶ EEPROM can be reprogrammed.

▶ Boot initializes peripherals. They might not be initialized as your
application needs them.

If you use it , initialize it!

An example is the CODEC: has a bypass added to the CODEC output.
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DE2-70 reference materials

The Terasic DE2-70 Resources web page

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=53&No=226&PartNo=4

contains files for:

▶ DE2-70 User Manual,

▶ DE2_70 Control Panel (for Quartus 10.0),

▶ DE2_70 Video Utility (For Quartus 10.0/10.1),

▶ DE2-70 CD-ROM (for Quartus 9.1),

▶ DE2-70 Demonstrations for QuartusII 10.0 .

The two of most importance to us are the User Manual and the
Demonstrations. Must haves!

The DE2-70 Demonstrations also includes data sheets (manuals) for the
major components, e.g. SDRAM, TV Decoder, Ethernet interface.
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Definitive resources

The DE2-70 schematics. Describes what actually connects to who and
how.

The Quartus .csv pin name list. Establishes a convention for sinal
names.

The pin names used on the schematics do not necessarily match those
used when designing using Quartus. They, on occasion, differ between
related boards such as the DE2, the DE2-70 and the DE0-nano.

We make do with what we are provided. Try to avoid marching to your
own drummer.

Treat the DE-70 as NOT tolerant to signal levels other than 3.3 Volts!!!

This also applies to the C5515 USBstick, actually, more so!.
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Pleas

Please do not solder to any of the connector pins on the DE2-70,
the C5515 or the connector/adapter boards.

If the jumpers that we have in lab are not adequate see Jon or me
about buying or building what is needed.

When doing your projects give early thought to how things will
connect and order the needed parts early. It takes about a week to
order and get delivery. This can be sped up by paying more for
shipping, but this can get very expensive. Of course, at least one
order per semester goes awry.

If you break something or burn something out. Please tell Jon,
Professor Hero or me. Things happen. Not knowing that a piece of
equipment has been damaged is generally much worse than not
knowing.
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Hardware Description Languages

▶ Describes digital hardware, the logic elements it is made of, how
they are connected and how they are clocked.

▶ Used for design,design verification and synthesis (implementation).

▶ Maps a hardware description into bit streams used to configure a
FPGA.

▶ Two main HDL languages, (System)Verilog and VHDL.

▶ SystemVerilog is modeled after C. Makes assumptions, can be
criticized as helping (in effect) when making mistakes.

▶ VHDL is (sort of) Ada like. Makes you be very precise. Often
criticized as to leading to verbose code.

▶ The world is about half (System)Verilog and half VHDL.

Verilog/SystemVerilog is used in EECS 452.
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The (System)Verilog hardware description language

Looks like a programming language. IT IS NOT!

▶ Does not program hardware!

▶ Describes hardware modules and how they are
interconnected.

▶ The syntax is very closely modeled on that of C.

It is a hardware description language.
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Brief history of the Verilog HDL

▶ Seeds planted about 1985. Originally intended as a simulation
language.

▶ Sold to Cadence in 1990. Capability for synthesis was gradually
added.

▶ Verilog-1995 standard.

▶ Verilog-2002 standard

▶ Verilog IEEE standard 1364-2005 issued.

▶ Initial SystemVerilog standard, 1800-2005.

▶ SystemVerilog Standard merged with Verilog Standard, 1800-2009.

▶ Current IEEE SystemVerilog standard version, 1800-2012.

▶ EECS has recently switched from Verilog to SystemVerilog.

▶ SystemVerilog is upward compatible with Verilog.
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Learning SystemVerilog

Common quotes:

▶ You learn by doing.

▶ You learn from your mistakes.

▶ Start simple, slowly add complexity.

My background is VHDL (an alternative HDL). I’ve done a moderately
small amount design using SystemVerilog. For both languages I’ve done
a lot of learning.

One thing that I’ve learned is that when something goes wrong it is
important understand what and why. Otherwise nothing has been
learned.
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Some Verilog and SystemVerilog references

http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/SystemVerilog
http://www.asic-world.com/systemverilog/tutorial.html

Digital System Design with SystemVerilog, Mark
Zwolinski, Prentice Hall, 2010.

Download the SystemVerilog standard . . . it’s free!

http://standards.ieee.org/events/edasymposium/stds.html

Complements of Accellera.
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Comments on (System) Verilog references

▶ I’ve seen the claim (on the web) that the SystemVerilog standard
makes a good tutorial. With a bit of caution, I have found the
standard to be very useful. Having a previous bit of Verilog
background helps deciding what to pay attention to and what to
skip over.

▶ There don’t seem to be many texts focused on design and synthesis
using SystemVerilog. There are several that focus on the use of
SystemVerilog for design verification and benchmarking.

▶ I used Mark Zwolinski’s Digital System Design with SystemVerilog as
as a reference for my learning. This is well written and reasonably
current, copyright 2010.
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Comments about standards

▶ If you are earning your living doing programming and or
hardware design, you should have a copy of the associated
standards. Typically we depend upon secondary sources such
as textbooks and web articles. Where did they get their
information?

▶ It is often useful to read the standards.

▶ Standards are notoriously hard to read. I strongly feel that it’s
worth the effort to at least look at them.

The Verilog and SystemVerilog standards are readily available on
the web.
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Verilog DIY learning links

http://www.asic-world.com, in particular:

http://www.asic-world.com/verilog/verilog_one_day.html

Altera’s HDL design examples:

http://www.altera.com/support/examples/exm-index.html

How does SystemVerilog extend Verilog?

http://en.wikipedia.org/wiki/SystemVerilog

There are also two EECS 270 tutorials linked to on the lab exercise 3
write-up.

Consider using SystemVerilog.
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Altera’s Quartus II design software

▶ An Eclipse GUI based development system.

▶ Supports the development flow from design entry to loading the
design bit file into a FPGA and/or loader EPROM.

▶ EECS 452 uses CAEN’s subscription edition on Windows 7.

▶ A free web edition is available for Windows and Linux.

▶ I’m running version 13.0 SP1 on Windows, Ubuntu and Debian.

http://dl.altera.com/13.0sp1/?edition=web

Depending on the version, a small edit might be needed on the
install file if not installing on Red Hat Linux.

▶ Cyclone II FPGAs (used on the DE2-70) are no longer supported as of
Quartus II V13.1.

▶ The DE0-Nano uses a Cyclone IV which continues to be supported
(started with Quartus II V10.0).

EECS 452 – Fall 2014 Lecture 5 – Page 34/143 Tuesday – September 16, 2014

http://dl.altera.com/13.0sp1/?edition=web


Some Quartus II resources

An introduction to Quartus II.

http://www.altera.com/literature/manual/quartus2_
introduction.pdf

Quartus II Handbook v14.0a10 (Complete Three-Volume Set) (23 MB).

http://www.altera.com/literature/lit-qts.jsp

A bit overwhelming in size. Take a peek to see what’s there.

Using the Quartus II Software: An Introduction (ODSW1100) 72 minutes
Online Course . Free, registration required.

http://www.altera.com/education/training/courses/odsw1100

It is strongly recommended that you watch this!!!

Not all of the covered material applies to us, but a lot does!
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Processing a design

A Verilog design description describes the

▶ The registers making up a device.

▶ The interconnections between registers.

▶ The timing of changes in the register states.

A series of Quartus programs

▶ synthesizes the design to the basic logic element level.

▶ fits the result into the FPGA and routes signals.

▶ generates a .sof file to be used to configure the logic elements and
establish routing segments and .pof file for possible use in
programming the boot EPROM.

The loader program is used to download the .sof file into the FPGA and
start it running.

Note: For the DE0-Nano a .pof is not generated and the .sof file needs
to be further processed to get the boot EPROM contents.
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Quartus II file extensions

Quartus II uses and/or generates file using a various file extensions. The
extensions most important to us are:

.v Verilog text file.

.sv SystemVerilog text file.

.qpf Project description file.

.csv Comma separated values. Normally used to generate
the working pin name description file.

.qsv Pin description list. Often there is a default version
that can be used to generate the working version.

.sdc clock definitions.

.sof Bit output file used to program the FPGA.

.pof Bit output file used to program boot flash EPROM.

There are more, but these are the ones you will normally work with.

EECS 452 – Fall 2014 Lecture 5 – Page 37/143 Tuesday – September 16, 2014



.qsf file comments

▶ This file has the name of the top file and the extenstion .qsf.

▶ It is used to map signal/wire names to pins on the FPGA and
to specifify other information associated with that pin such as
logic time, pull-up or pull-down resistor.

▶ I downloaded my starting .qsf versions (which I keep in a
separate directory from the Altera web site. These are specific
to the chip being used.

▶ Use assignments — Import Assignments to load the
master list into a project specific .qsf file.

▶ The names assigned in the .qsf file are the ones to be used
by the top module to connect to pins on the FPGA.

▶ Moving between boards, Altera’s signal names sometimes
change. Mostly they are fairly consistent.
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DE2-70 .qsf file snippet

set_location_assignment PIN_E14 -to TD1_VS
set_location_assignment PIN_D14 -to TD1_RST_N
set_location_assignment PIN_H15 -to TD2_CLK27
set_location_assignment PIN_C10 -to TD2_DATA[0]
set_location_assignment PIN_A9 -to TD2_DATA[1]
set_location_assignment PIN_B9 -to TD2_DATA[2]
set_location_assignment PIN_C9 -to TD2_DATA[3]
set_location_assignment PIN_A8 -to TD2_DATA[4]
set_location_assignment PIN_B8 -to TD2_DATA[5]
set_location_assignment PIN_A7 -to TD2_DATA[6]
set_location_assignment PIN_B7 -to TD2_DATA[7]
set_location_assignment PIN_E15 -to TD2_HS
set_location_assignment PIN_D15 -to TD2_VS
set_location_assignment PIN_B10 -to TD2_RST_N
set_location_assignment PIN_R29 -to EXT_CLOCK
set_location_assignment PIN_E16 -to CLOCK_28
set_location_assignment PIN_AD15 -to CLOCK_50
set_location_assignment PIN_D16 -to CLOCK_50_2
set_location_assignment PIN_R28 -to CLOCK_50_3
set_location_assignment PIN_R3 -to CLOCK_50_4
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DE0-Nano .qsf file snippet

#============================================================
# Accelerometer and EEPROM
#============================================================
set_location_assignment PIN_F2 -to I2C_SCLK
set_location_assignment PIN_F1 -to I2C_SDAT
set_instance_assignment -name IO_STANDARD "3.3-V LVTTL" -to I2C_SCLK
set_instance_assignment -name IO_STANDARD "3.3-V LVTTL" -to I2C_SDAT

set_location_assignment PIN_G5 -to G_SENSOR_CS_N
set_location_assignment PIN_M2 -to G_SENSOR_INT
set_instance_assignment -name IO_STANDARD "3.3-V LVTTL" -to G_SENSOR_CS_N
set_instance_assignment -name IO_STANDARD "3.3-V LVTTL" -to G_SENSOR_INT

#============================================================
# ADC
#============================================================
set_location_assignment PIN_A10 -to ADC_CS_N
set_location_assignment PIN_B10 -to ADC_SADDR
set_location_assignment PIN_B14 -to ADC_SCLK
set_location_assignment PIN_A9 -to ADC_SDAT
set_instance_assignment -name IO_STANDARD "3.3-V LVTTL" -to ADC_CS_N
set_instance_assignment -name IO_STANDARD "3.3-V LVTTL" -to ADC_SADDR
set_instance_assignment -name IO_STANDARD "3.3-V LVTTL" -to ADC_SCLK
set_instance_assignment -name IO_STANDARD "3.3-V LVTTL" -to ADC_SDAT
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Selecting the I/O standard

▶ The Altera FPGA IO blocks support use of a number of logic
drive/receiver standards.

▶ These are generally selected per IO block. All pins in a given
block must use the same standard.

▶ The standards supported will vary between logic families.

▶ For the DE2-70 the default (which is?) has proven adequate
for most cases.

▶ If changes are needed to a .qsf file, make a copy of the
supplied file, rename it to the current project and make the
desired changes. Modifying the standard file without
renaming (and commenting the changes) likely will have
undesired and unexpected consequences at some future time.
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.sdc file comments

▶ Not strictly needed, but . . . .

▶ Used to describes the clocks used by a design. Typically our
designs will primarily use a 50 MHz clock. But not necessarily
exclusively.

▶ Timing information is used when routing and optimizing a a
design.

▶ Information along with chip information to calculate expected
set up and hold times and the maximum allowable clock
frequency. Most small, lab exercises just work. However with
larger projects and/or those with multiple clocks the timing
results should be checked.

▶ I copy and rename a version from project to project adding or
commenting out as needed.
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From my .sdc file

This is a mixture of what I originally entered and wizard generated text.

I copy and rename the file from another project. Give it the name of the
top file with the .sdc extension. This seems to be read and overwritten
automatically.

I had to split the CLOCK_25 line into two lines to make it fit here. Make it
back into one line if you use it.

# Clock constraints

create_clock -name "CLOCK_50" -period 20.000ns [get_ports {CLOCK_50}]
create_generated_clock -divide_by 2 -source [get_ports CLOCK_50]

-name "CLOCK_25" [get_registers CLOCK_25]
#create_clock -name "CLOCK_28" -period 35.714ns [get_ports {CLOCK_28}]
#create_clock -name "TD1_CLK27" -period 37.037ns [get_ports {TD1_CLK27}]

#create_clock -name "GPIO_1[10]" -period 25ns [get_ports {GPIO_1[10]}]

# Automatically constrain PLL and other generated clocks
derive_pll_clocks -create_base_clocks
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Dealing with a pin conflict

In the lab exercise you were asked to add a line to your .qsf file to avoid
a pin assignment problem. The following is an alternate way to
accomplish the same task.

Pin AD25 of the DE2-70’s FPGA has two uses. One is as a JTAG pin and
the second as an input/output pin. The DE2-70 connects this pin to slide
switch iSW[7].

When a design uses iSW[7] this will lead to a fatal error.

To correct the situation:

Assignments -- Device -- Device and Pin Options

Click on the Value entry for nCEO and select Use as regular I/O. OK
click your way out.

This can be handled in the project .qsf file as well.
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Creating a project
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Specifying the FPGA (DE2-70)
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Almost ready to go
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It remains to . . .

▶ Import a .qsf file. This maps pins on the FPGA to name
space. These can vary depending on the board and where you
got the file from.

▶ Remove a pin conflict between a pin that is connected to a
slide switch and Quartus defaults as a programming pin. This
likely is already done in the .qsf file used in the lab.

▶ Probably should supply an .sdc file to define the clocking.
This enables the timing analyzer to check for proper set-up
and hold times. This is often skipped when doing simple
small projects.
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Quartus II screen shot
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The warning windows

The warning and the critical warning windows are your friends.

If the SV/V compiler encounters a inconsistency (e.g., declared array size
does not match the size used in an expression) rather than throw an
error it will make a decision about how to resolve it and continue on.

When writing code it is a good philosophy to say what you mean and
mean what you say. (I.e., don’t get clever!)

Usually the warnings alert you to when the compiler has had to make a
decision. One can accept the decision or fix their code to eliminate the
the warnings.

Critical warnings are the most severe. The compiler did something but
didn’t like what it had to do. Fix these for sure.
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Structure of a (Verilog/SystemVerilog design

FGPA Fabric

Off-FPGA Hardware

top module

module a module b module etc.

module amodule a

pins/pads
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Comments on module structure

▶ (System)Verilog is very C like.

▶ Multiple modules can be present in a source file.

▶ Consider naming the top module with the project name
followed by _top. For example my VGA_nano project top file
is named VGA_nano_top.sv.

▶ The top level module port signal names need to match the
names in the assigned .qsf file. The .qsf file assigns signal
names to actual pins on the FPGA.

▶ Occasionally one wants to combine two existing projects each
having its own top file. Consider using a top_top file.
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Module port declaration and using it

Definition:

module module_name (
direction name1,
direction name2,
input clk, // typically 50 MHz
input reset_n

);

Directions are typically input, output and inout.

Instantiation:

module_name instance_name (
.name2(parameter2),
.name1(parameter1),
.reset_n(reset_n),
.clk(clk)

);

I strongly recommend passing signals by name rather than by order!!!
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An Altera example
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Altera’s addsub.v example

module addsub
(

input [7:0] dataa,
input [7:0] datab,
input add_sub, // if this is 1, add; else subtract
input clk,
output reg [8:0] result

);

always @ (posedge clk)
begin

if (add_sub)
result <= dataa + datab;

else
result <= dataa - datab;

end
endmodule

This is a behavioral description of what is to be accomplished. Note the

automatic promotion of the number of bits.
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Structural and Behavioral descriptions

Structural — Pretty much working at the gate level. Organizing
various types of basic logic elements and describing how they are
connected. If you want to add two twelve bit signals you have to
design and build the adder.

Behavioral — Pretty much saying what you want. Not so much
concerned with how it is accomplished. For example specifying
that two twelve bit signal values be added together without
specifying how this is to be physically accomplished.
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Verilog’s numbers

Size (decimal number, always), followed by the base, followed by the value, in
that base.

Bases are denoted:

’b, ’B binary

’o, ’O octal

’h, ’H hexadecimal

’d, ’D decimal
For example:

4’b0101 // is a four bit value specified using 4 binary digits
4’H5 // is a four bit binary value specified using a hex digit
16’d32767 // is a 16 bit binary value specified using a decimal value
-16’d1234 // is the 16 bit binary value specified in two’s complement

// form corresponding to decimal value -1234
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Verilog’s base logic elements

and nand nor or xor xnor

These six logic gates can have only one output and multiple inputs. The
output is specified first in the instantiation.

Example and gate declaration: and a1 (out, in1, in2, in3);

buf not

These can have multiple outputs but only one input.

Example declaration: buf b1 (out1, out2, in);
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Full Adder

outputs inputs
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Full Adder — Structural

module full_adder(a,b,cin,sum,cout);
input a,b,cin;
output sum, cout;

xor (sum,a,b,cin);
and (a0,a,b),(a2,a,cin),(a3,b,cin);
or (cout,a0,a1,a2);

endmodule

This is somewhat on the “obsessed with detail” side of life. We rarely, if
ever, want to work at this low of level of abstraction.

At least it is a level of abstraction above specifying how to arrange
individual transistors.
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Verilog’s operators

The point of the next three slides is to make you aware of the
operators available in Verilog.

These generally cause the required logic to be synthesized. For
example, if we have two 16-bit reg items we can add them
together and place the result in a third (which might be one of the
two original) by writing:

a <= b+c;

Verilog takes on the responsibility of supplying the needed adder
logic. Each time we write an expression like this we create another
adder.
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Verilog’s operators part 1

Table 11-1—Operators and data types

Operator token Name Operand data types

= binary assignment operator any

+= -= /= *= binary arithmetic assignment operators integral, real, shortreal 

%= binary arithmetic modulus assignment operator integral 

&= |= ^= binary bit-wise assignment operators integral

>>= <<= binary logical shift assignment operators integral 

>>>= <<<= binary arithmetic shift assignment operators integral 

?: conditional operator any

+ - unary arithmetic operators integral, real, shortreal 

! unary logical negation operator integral, real, shortreal 

~ & ~& | ~| ^
~^ ^~

unary logical reduction operators integral

+ - * / ** binary arithmetic operators integral, real, shortreal 

% binary arithmetic modulus operator integral 

& | ^ ^~ ~^ binary bit-wise operators integral

>> << binary logical shift operators integral 

From IEEE Standard 1800-2009.
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Verilog’s operators part 2
binary arithmetic operators integral, ,  

% binary arithmetic modulus operator integral 

& | ^ ^~ ~^ binary bit-wise operators integral

>> << binary logical shift operators integral 

>>> <<< binary arithmetic shift operators integral 

&& ||
-> <-> 

binary logical operators integral, real, shortreal 

< <= > >= binary relational operators integral, real, shortreal 

=== !== binary case equality operators any except real and
shortreal 

== != binary logical equality operators any

==? !=? binary wildcard equality operators integral

++ -- unary increment, decrement operators integral, real, shortreal 

inside binary set membership operator singular for the left operand

dist
a 

aThe  operator is described in 16.15.2 (Assume statement) and 18.5.4 (Distribution). 

binary distribution operator integral 

{} {{}} concatenation, replication operators integral

{<<{}} {>>{}} stream operators integral 

From IEEE Standard 1800-2009.
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Verilog’s operator precedences
Table 11-2—Operator precedence and associativity  

Operator Associativity Precedence

() [] :: .  left highest

+ - ! ~ & ~& | ~| ^ ~^ ^~ ++ -- (unary)   

** left

* / % left

+ - (binary) left

<< >> <<< >>> left

< <= > >= inside dist left

== != === !== ==? !=? left 

& (binary) left

^ ~^ ^~ (binary) left

| (binary) left

&& left

|| left

?: (conditional operator) right

–> <-> right 

= += -= *= /= %= &= ^= |=
<<= >>= <<<= >>>= := :/ <=

none

{} {{}} concatenation lowest

From IEEE Standard 1800-2009.
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SystemVerilog’s data types

In Verilog there are two primary data types, wires (wire) and
registers(reg).

Wires represent connections. Registers correspond to variables to
hold values.

The default data type is a one bit wide wire.

Note: registers are not necessarily actual registers.

SystemVerilog introduced logic type to replace the use of wire
and reg.

SystemVerilog is a weakly typed language.
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Full adder — Behavioral

module FullAdder(input a, b, cin,
output sum, cout);

assign sum = a^b^cin;
assign cout = (a&b)|(a&cin)|(b&cin);

endmodule

^ exclusive-or

| inclusive-or

& and

I parenthesized the and operations even though I didn’t have to. It is
generally better to use parentheses than not.

For this type of application, one likely would work at this level of
abstraction.
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Full adder — Behavioral, again

module FullAdder(input a, b, cin,
output reg sum, cout);

always @(*)
{cout,sum} = a+b+cin;

endmodule

An even more abstract view. Note the automatic extension of one-bit bit
operations to two bits caused by the concatenation on the result side of
the = assignment. At least this is what I think has happened.

This example is based on one found at
http://www.asic-world.com/verilog/syntax2.html.
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Full adder test

Each full adder implementation should
give the same result.

Testing using switches:

▶ iSW[0] carry in

▶ iSW[1] a value

▶ iSW[2] b value

Displaying using red leds:

▶ 0,4,8 the sum out

▶ 1,5,9 the carry out

This was a good learning exercise.

module FullAdder_top
( output [17:0] oLEDR,

input [17:0] iSW
);

FullAdder_S fa0 (iSW[1], iSW[2], iSW[0],
oLEDR[0], oLEDR[1]

);

FullAdder_B0 fa1 (iSW[1], iSW[2], iSW[0],
oLEDR[4], oLEDR[5]

);

FullAdder_B1 (.cout(oLEDR[9]), .sum(oLEDR[8]),
.cin(iSW[0]), .b(iSW[2]), .a(iSW[1])

);
endmodule
//----------------------------------------
module FullAdder_S (a,b,cin,sum,cout);

input a,b,cin;
output sum, cout;

xor (sum,a,b,cin);
and (a0,a,b),(a2,a,cin),(a3,b,cin);
or (cout,a0,a1,a2);

endmodule
//----------------------------------------
module FullAdder_B0 (input a, b, cin,

output sum, cout);
assign sum = a^b^cin;
assign cout = (a&b)|(a&cin)|(b&cin);

endmodule
//----------------------------------------
module FullAdder_B1 (input a, b, cin,

output reg sum, cout);
always @(*)
{cout,sum} = a+b+cin;

endmodule
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Unrestricting the signal order

The order of the signals in the instantiation of a module normally MUST
match the order in the associated module definition.

For modules having a large of number of signals to connect this can be a
recipe for disaster.

Today’s common wisdom is that having to match order is not a good
thing. That is, one should not require it.

Using the construct shown in the FullAdder_B1 instantiation removes
the matching order requirement. The signal order used in this
instantiation is the reverse of that of the module definition, yet, the logic
works.

FullAdder_B1 (.cout(oLEDR[9]), .sum(oLEDR[8]),
.cin(iSW[0]), .b(iSW[2]), .a(iSW[1])

);

Quartus II makes the external signal connections to the top module by
name.
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Blocking versus non-blocking assignments

How does

c = a;
d = c;

differ from

c <= a;
d <= c;

?

In an FPGA everything CAN happen all at once. — anon
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SystemVerilog procedural statements

Selection statements — if–else, case, casez, casex, unique, unique0, priority

Loop statements — for, repeat, foreach, while, do...while, forever

Jump statements — break, continue, return

From IEEE Standard 1800-2009. I’m mixing my standards between this slide and
the next, sorry.
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Syntax for looping statements

Expanding on the looping statements:

Syntax 9-7—Syntax for the looping statements

function_loop_statement ::= (From Annex A - A.6.8)
forever function_statement

| repeat ( expression ) function_statement
| while ( expression ) function_statement
| for ( variable_assignment ;  expression ; variable_assignment )

function_statement

loop_statement ::=
forever statement

| repeat ( expression ) statement
| while ( expression ) statement
| for ( variable_assignment ;  expression ; variable_assignment )

statement

From IEEE Standard 1364-2001.
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For loop example

always_comb // always @(word)
begin

is_odd = 0;
for (i=0; i<=7; i=i+1) begin

is_odd = is_odd xor word[i];
end

end

assign parity = is_odd;

Whoa! This is combinatorial logic. It sure looks sequential. What
does the resulting logic look like?

From Y.T.Chang 2001 CIC/Xilinx slide.
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For loop example result

0

word[3]

word[4]

word[7]

word[6]

word[5]

word[2]

word[1]

word[0]

parity
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Lab exercise 3

Exercise serves as an introduction to the DE2-70, Verilog and Quartus II.

On the hardware side you will working with the

▶ slide switches,

▶ push button switches,

▶ LEDs,

▶ seven-segment digits,

▶ CODEC (A/D and D/A converters for audio),

▶ direct digital synthesis of a sine wave.

In today’s lecture we touch on only a few aspects of the exercise.
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Comments on the DE2-70 CODEC support

▶ Same CODEC part is used on the DE2-70 as on the DE2.

▶ Large chunks of CODEC support code from

http://courses.cit.cornell.edu/ece576/DE2/NoiseCancel/AUDIO_DAC_ADC.v

and Altera. Module from EECS 270.

▶ I believe that operation depends upon the CODEC to being
previously initialized. This generally happens when the default
configuration file is loaded into the FPGA when the power is applied.
If the boot EPROM is modified, the CODEC likely will NOT be
initialized at power on. Then again, I might be wrong.

▶ When running my DDS I had left my analog input connected. It
seemed to add to my DDS output. Disconnecting the analog input
eliminated the problem.
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CODEC device used on DE2-70

The CODEC is a Wolfson WM8731 audio CODEC.

http://www.wolfsonmicro.com/products/codecs/WM8731/

From the Wolfson web site.
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The WM8731, what and how

“Stereo 24-bit multi-bit sigma delta ADCs and DACs are used with
oversampling digital interpolation and decimation filters. Digital audio
input word lengths from 16-32 bits and sampling rates from 8kHz to
96kHz are supported.” (From the WM8731 web site.)

The lab exercise using the WM8731 is reasonably self-contained.
However, if you need more information (perhaps for use in a project):

▶ Read the data sheet. (Also present on the DE2-70 System CD-ROM.)

▶ Read section 6.11 of the D2-70 User manual.

▶ Look at the DE_70_i2sound demonstration located in the
DE2-70_demonstrations_V10 collection.

See WAN_0117 for information on setting supported sampling rates.
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DE2-70 schematic, CODEC
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From DE2-70 User Manual.
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DE2-70 CODEC pin assignments

Signal Name FPGA Pin No. Description 

AUD_ADCLRCK PIN_F19 Audio CODEC ADC LR Clock 

AUD_ADCDAT PIN_E19 Audio CODEC ADC Data 

AUD_DACLRCK PIN_G18 Audio CODEC DAC LR Clock 

AUD_DACDAT PIN_F18 Audio CODEC DAC Data 

AUD_XCK PIN_D17 Audio CODEC Chip Clock 

AUD_BCLK PIN_E17 Audio CODEC Bit-Stream Clock 

I2C_SCLK PIN_J18 I2C Data 

I2C_SDAT PIN_H18 I2C Clock 

Table 5.12.  Audio CODEC pin assignments. 

From DE2-70 User manual.
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Need a fast D/A?

Assuming that the VGA DAC is not being used to generate a VGA
display it can be used as up to a three channel DAC.

A standard 640× 480 display pixel clock rate is 25 MHz. DAC
clock rates of up to around 75 MHz likely are possible. Consult
the data sheet.
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A digression, the PS2 connector

This is not used in any of the lab exercises but is a resource that
might be useful (and has) at project time.

▶ Can be used other than to connect to a PS2 device.

▶ There are four PS2 signal pins that are connected to the FPGA.

▶ Power and ground are also present.

▶ Each non-supply pin can be used either as input or output.
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Implementing a DDS sine table

▶ Use a case statement with assignments. Simple and easy. This is one
of ways described in the lab exercise. A large table requires use of a
lot of logic elements. A 256× 16 table uses 4096 LE D-registers.

▶ Indexed arrays are supported by Verilog 2001. These can be
initialized by reading an external initialization file (constructs exist
to do this) or by using an initial block.

▶ SystemVerilog allows array initialization values to be listed pretty
much as in the same manner as for C.

▶ Use a M4K memory block to hold the table. Off fabric. Simply a RAM
block initialized using a .mif file. If you never write to it, initialized
RAM serves as a ROM. A single M4K memory block can hold a
256× 16 sine table with 512 (nominally parity) bits left over.
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Sine generation using a case statement
always@(negedge clock)

counter <= counter + FTV;

always@*
begin

case(counter[9:6])
0 : dataOut <= 0;
1 : dataOut <= 12539;
2 : dataOut <= 23170;
3 : dataOut <= 30273;
4 : dataOut <= 32767;
5 : dataOut <= 30273;
6 : dataOut <= 23170;
7 : dataOut <= 12539;
8 : dataOut <= 0;
9 : dataOut <= -12539;

10 : dataOut <= -23170;
11 : dataOut <= -30273;
12 : dataOut <= -32767;
13 : dataOut <= -30273;
14 : dataOut <= -23170;
15 : dataOut <= -12539;

default :
dataOut <= 0 ;

endcase
end
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Sine generation using an array

reg [15:0] sine_table [15:0];

initial begin
sine_table[0] = 0;
sine_table[1] = 12539;
sine_table[2] = 23170;
sine_table[3] = 30273;
sine_table[4] = 32767;
sine_table[5] = 30273;
sine_table[6] = 23170;
sine_table[7] = 12539;
sine_table[8] = 0;
sine_table[9] = -12539;
sine_table[10] = -23170;
sine_table[11] = -30273;
sine_table[12] = -32767;
sine_table[13] = -30273;
sine_table[14] = -23170;
sine_table[15] = -12539;

end

always@(negedge clock)
counter <= counter + FTV;

always @(*)
dataOut = sine_table[counter[9:6]];
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Sine generation using SystemVerilog

reg [15:0] sine_table[0:15] = ’{0, 12539, 23170, 30273,
32767, 30273, 23170, 12539,
0, -12539, -23170, -30273,
-32767, -30273, -23170, -12539};

always@(negedge clock)
counter <= counter + FTV;

always @(*)
dataOut = sine_table[counter[9:6]];

▶ Made the needed changes to my previous .v file.

▶ Note the use of ’{ as the opening brace.

▶ Note the top line sine_table index order.

▶ Changed the file extension to .sv.

▶ Recompiled and ran.
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Using QuartusII Megafunctions

In Quartus, Tools — MegaWizard Plug-In Manager

Usually will create a new one. Though editing an existing one is
something that I’ve frequently done.
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Megafunctions continued

Some are free, some are not. I think that the
non-free ones are in the MegaStore.

Non-free can usually be used tethered and are
likely time-duration limited.

My most common use has been RAM, ROM and
FIFO.

There is documentation. You have to hunt it up.
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Specifying a ROM
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Memory Initialization File .mif structure
% multiple-line comment

multiple-line comment %

-- single-line comment

DEPTH = 32; -- The size of data in bits
WIDTH = 8; -- The size of memory in words
ADDRESS_RADIX = HEX; -- The radix for address values
DATA_RADIX = BIN; -- The radix for data values
CONTENT -- start of (address : data pairs)
BEGIN

00 : 00000000; -- memory address : data
01 : 00000001;
02 : 00000010;
03 : 00000011;
04 : 00000100;
05 : 00000101;
06 : 00000110;
07 : 00000111;
08 : 00001000;
09 : 00001001;
0A : 00001010;
0B : 00001011;
0C : 00001100;

END;

http://quartushelp.altera.com/9.1/mergedProjects/reference/glossary/def_mif.htm
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More .mif information

.mif files are not part of the Verilog standards.

▶ Binary radix is BIN.

▶ Octal radix is OCT.

▶ Hexadecimal radix is HEX.

▶ Unsigned decimal is UNS.

▶ Signed decimal is DEC.

There are also some address/value pair syntax rules.

It is usually relatively easy to write a C program or MATLAB script to
automatically generate a .mif file. Or, at least, its contents for copy and
paste.
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Example .mif sine table generator

/*
* main.c
*
* slapdash quick and dirty sine table .. not
* checked for symmetry, etc.
*
* initial version .. 02 Oct 2011 .. K.Metzger
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define N 256
#define pi 3.14159265

void main(void) {

unsigned ctr;
int v;
FILE *out;

out = fopen("sine_rom.mif", "wa");
if (out == NULL) {

printf("cannot open output file\n");
exit(1);

}
printf("starting\n");

for(ctr=0; ctr<N; ctr++) {
v = 32767*sin(2*pi*ctr/(float)N);
fprintf(out, "%d : %04X;\n", ctr, v);

}
fclose(out);
printf("done\n");

}
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Comments

▶ My normal convention to place the file name on the first line.

▶ Did not pay attention to how values are rounder/truncated. There
are applications where getting the table right is very important.
Ours is not one of them, but you should be aware that the code is a
bit dirty.

▶ Only prints out the table entries. Have to hand add the descriptor
information.

▶ I did pay attention to the return when opening the output file.

▶ I did close the output file before terminating.

▶ Should have commented more.

With a minor change in the hardware only need half a period in the table.
Can, in effect, create a 512 value table using 256 entries. With a little
additional work can exploit a quarter period symmetry and can, in effect,
have a 1024 value table using only 256 entries.

If I do this quick and dirty, later, all you will remember is that it was dirty. — Wilbur Nelson
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Verilog multiplication and Cyclone II

In Exercise 3 a multiplication is involved in computing FTVs. At the
Verilog level one can write assign out = a*b. What’s behind the
implementation?

Using Google the following two documents were found:

▶ Recommended HDL Coding Styles.

▶ Embedded Multipliers in Cyclone II Devices.
Figure 12–2. Multiplier Block Architecture
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Example 11–1. Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
output [15:0] out;
input  [7:0] a;
input  [7:0] b;
assign out = a * b;

endmodule

From Altera documentation.
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Overflow lecture material

Variations on Blinky for the DE2-70.
Crossing time boundaries
Bit serial interfacing.
PMod D/A and A/D.
DE0-Nano.
Some comments.

Last one out should close the lab door!!!!

Please keep the lab clean and organized.

Always code as if the guy who ends up maintaining your code will be a violent
psychopath who knows where you live. — John Woods

EECS 452 – Fall 2014 Lecture 5 – Page 95/143 Tuesday – September 16, 2014



The FPGA Blinky variations

▶ The first variation is a “just do it” LED blinker. Synthesizes using a
“dreaded” latch.

▶ The second variation replaces the latch of the first variation using a
register.

▶ The third variation is slightly more complicated blinking two LEDs
in a simple pattern. This is meant to illustrate how one might code a
two process state machine.
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Blinking an LED

// File name: Blinky.sv
//
// 10Sep2013 .. initial version .. K.Metzger
//

module Blinky // top level module for this example
(

output LEDR[0], // signal names must match those in .qsf file
input CLOCK_50

);

logic led_bit, clk;
logic [24:0] counter; // sized to generate 0.5 second event

initial begin // initialize the start-up
led_bit = 0;
counter = 25000000-1; // count for 1/2 second at 50 MHz

end

assign clk = CLOCK_50; // connect 50 MHz clock to generic clk
assign LEDR[0] = led_bit; // connect the led_bit to RED LED 0

always_ff @(posedge clk) begin // use rising edge of the clock
counter <= counter-1; // set next counter value to current minus 1
if (counter == 0) begin // but if the counter equals 0

led_bit <= ~led_bit; // complement the led bit
counter <= 25000000-1; // reset the counter

end
end

endmodule
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Blinky comments

▶ A common problem is mismatching the top level signal names with the
ones used in the .qsf file. This is NOT flagged as an error!

▶ What happens to led_bit when counter is not 0? A latch is synthesized.

▶ The values of led_bit and counter change only on the positive edge
transition of clk.

▶ 25 bits allows counts of up to 33,554,432.

▶ One of my SystemVerilog fantasies is that counting down to 0 simplifies the
end test logic.

▶ SystemVerilog is a weakly typed language. It allows to do things like take an
integer and put it into a register. The value 25000000-1 is evaluated as a 32
bit value, truncated to 25 bits and then converted into a logic vector that
can be loaded into a 25 bit register.

▶ This is all well and good if I wrote code to do what I intended. If not, then
the compiler does it’s best to figure out what I meant and doesn’t tell me
what it did.

▶ It is very important to say you mean and mean what you say.
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Blinky using registers

// File name: Blinky_D.sv
//
// 10Sep2013 .. initial version .. K.Metzger
//

module Blinky_D
(

output LEDR[0],
input CLOCK_50

);

logic led_bit, next_led_bit, clk;
logic [24:0] counter, next_counter;

initial begin
led_bit = 0;
counter = 25000000-1;

end

assign clk = CLOCK_50;
assign LEDR[0] = led_bit;

always_ff @(posedge clk) begin
led_bit <= next_led_bit;
counter <= next_counter;

end

always_comb begin
next_counter = counter-1;
next_led_bit = led_bit;

if (counter == 0) begin
next_counter = 25000000-1;
next_led_bit = ~led_bit;

end
end

endmodule

EECS 452 – Fall 2014 Lecture 5 – Page 99/143 Tuesday – September 16, 2014



Blinky_D comments

▶ I got sort of canonical. The counter was already a register because
of the way it was being used. At least I think it was.

▶ The led_bit is aways updated in the always_ff block. The
next_led_bit = led_bit determines what the updated value is if
there isn’t a change to be made.
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Blinky_state part 1

// File name: Blinky_state.sv
//
// 10Sep2013 .. initial version .. K.Metzger
// 17Sep2013 .. made Blinky more complicated and added states .. KM

module Blinky_state
(

output LEDR[0],
output LEDG[0],
input CLOCK_50

);

logic red_led_bit, next_red_led_bit;
logic green_led_bit, next_green_led_bit;
logic clk;
logic [7:0] time_counter, next_time_counter;
logic [24:0] counter, next_counter;

enum {starting, turn_on_red, turn_on_green} state, next_state;

initial begin
red_led_bit = 0;
green_led_bit = 0;
counter = 25000000-1;
time_counter = 0;
state = starting;

end

assign clk = CLOCK_50;
assign LEDR[0] = red_led_bit;
assign LEDG[0] = green_led_bit;

always_ff @(posedge clk) begin
red_led_bit <= next_red_led_bit;
green_led_bit <= next_green_led_bit;
time_counter <= next_time_counter;
counter <= next_counter;
state <= next_state;

end
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Blinky_state part 2
always_comb begin

next_counter = counter-1;
next_time_counter = time_counter;
next_red_led_bit = red_led_bit;
next_green_led_bit = green_led_bit;
next_state = state;

if (counter == 0) begin
next_counter <= 25000000-1;
next_time_counter <= time_counter + 1;

end

case (state)
starting: begin

if (time_counter == 2) begin
next_time_counter <= 0;
next_red_led_bit <= 1;
next_state <= turn_on_red;

end
end

turn_on_red: begin
if (time_counter == 4) begin

next_time_counter <= 0;
next_green_led_bit <= 1’b1;
next_time_counter <= 0;
next_state <= turn_on_green;

end
end

turn_on_green: begin
if (time_counter == 6) begin

next_time_counter <= 0;
next_red_led_bit <= 0;
next_green_led_bit <= 0;
next_state <= starting;

end
end

endcase
end

endmodule
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Blinky_state comments

▶ Idles for one second with both LEDs off. Turns the red LED on. After
two seconds turns on the green LED. After 3 more seconds turns
both off. Repeats.

▶ Uses an enum statement to define the states and a case statement to
select between states.

▶ The “present” and “next” paradigm is reasonably common. At least
one FPGA test uses “present” as a prefix as is done with “next”.

▶ The always_ff always loads the next value into the current. The
always_comb starts by setting the next values to their current
values. This is what makes the compiler synthesize registers.

▶ Perturbations abound. For example, the counter could be
incremented in the always_ff eliminating the need for a next
version and making the code slightly less verbose.

▶ Notice the lack of comments. This is often justified by stating that
the code is self documenting. Generally it’s considered good practice
to have some comments. You might be the one that has to maintain
the code.

EECS 452 – Fall 2014 Lecture 5 – Page 103/143 Tuesday – September 16, 2014



Loading Blinky into the FPGA

▶ There are two ways to get access to the USB Blaster programmer.

1. On the tool bar at the top of the Quartus II window go to
Tools---Programmer.

2. In the Task window where you clicked Compile Design double
click Program Device (Open Programmer).

▶ Make sure that the DE2-70 RUN/PROG switch (left middle side) is in
the RUN position.

▶ The programmer support is normally configured properly and all
one needs is to click the Start button. Progress is indicated in the
Progress window.

▶ Sometimes the USB-Blaster isn’t connected to the programmer
suport. Sometimes this means the USB cable is not present or the
DE2-70 is powered off. Sometimes, for some reason, the driver isn’t
present in the PC.

▶ The file to be loaded into the FPGA has a .sof extension.
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Making Blinky the default

▶ Quartus generates two output files. One has a .sof extension and is
for loading directly into the FPGA. The other has a .pof extension
and is for loading into the power-on boot EEPROM.

▶ To program the EEPROM the DE2-70 RUN/PROG switch needs to be in
the PROG position.

▶ In the programmer window:

▶ Change the Mode to Active Serial Programming.
▶ Add File, select output_files. You should see your .pof file

listed. Click on it then on open. This will return you to the
Programmer main window.

▶ Select Program/Configure.
▶ Click Start.

▶ Turn the DE2-70 power off, return the RUN/PROG switch to the RUN
position, turn the power back on. Your design should be in the
FPGA and running.
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Restoring the default default

▶ The Terasic supplied default start-up code can be found in the
DE2-70_v.1.4.0_CDROM file.

▶ Mouse down through DE2_70_demonstrations, DE2_70_Default
to find the DE2_70_Default.qpf file.

▶ The included .sof and .pof were generated using a earlier version
of Quartus and might not be programmable using the current
version’s USB Blaster. I generally recompile.

▶ Program the EEPROM using the newly generated .pof as described
in the preceding slide.
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The FPGA breakout board

▶ Connects 40-pin IO port to 8
6-pin connectors.

▶ 6-pin connectors compatible
with Digilent PMod boards.

http://www.digilentinc.com/

Products/Catalog.cfm?

NavPath=2,401&Cat=9.

▶ Supply voltage jumper
selectable, +3.3V and +5.0V.
Remove jumpers when power
not needed!

▶ Pin 1 light colored.

▶ Also useful as test points.
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DE2-70 FPGA breakout board connections

08/05/12 7:08:14 PM  f=1.50  C:\Users\Kurt\Documents\eagle\Fall_2011_DE2-70_breakout\DE270Break.sch (Sheet: 1/1)
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DE2/DE2-70/DE0-Nano GPIO names
pin DE2 DE2-70 DE0-Nano

1 GPIO_x[0] CLKINnx IN0
2 GPIO_x[1] GPIO_x[0] GPIO_x[0]
3 GPIO_x[2] CLKINpx IN1
4 GPIO_x[3] GPIO_x[1] GPIO_x[1]
5 GPIO_x[4] GPIO_x[2] GPIO_x[2]
6 GPIO_x[5] GPIO_x[3] GPIO_x[3]
7 GPIO_x[6] GPIO_x[4] GPIO_x[4]
8 GPIO_x[7] GPIO_x[5] GPIO_x[5]
9 GPIO_x[8] GPIO_x[6] GPIO_x[6]

10 GPIO_x[9] GPIO_x[7] GPIO_x[7]
11 VCC5 VCC5 VCC_SYS
12 GND GND GND
13 GPIO_x[10] GPIO_x[8] GPIO_x[8]
14 GPIO_x[11] GPIO_x[9] GPIO_x[9]
15 GPIO_x[12] GPIO_x[10] GPIO_x[10]
16 GPIO_x[13] GPIO_x[11] GPIO_x[11]
17 GPIO_x[14] GPIO_x[12] GPIO_x[12]
18 GPIO_x[15] GPIO_x[13] GPIO_x[13]
19 GPIO_x[16] CLKOUTnx GPIO_x[14]
20 GPIO_x[17] GPIO_x[14] GPIO_x[15]
21 GPIO_x[18] CLKOUTnx GPIO_x[16]
22 GPIO_x[19] GPIO_x[15] GPIO_x[17]
23 GPIO_x[20] GPIO_x[16] GPIO_x[18]
24 GPIO_x[21] GPIO_x[17] GPIO_x[19]
25 GPIO_x[22] GPIO_x[18] GPIO_x[20]
26 GPIO_x[23] GPIO_x[19] GPIO_x[21]
27 GPIO_x[24] GPIO_x[20] GPIO_x[22]
28 GPIO_x[25] GPIO_x[21] GPIO_x[23]
29 VCC33 VCC33 VCC3P3
30 GND GND GND
31 GPIO_x[26] GPIO_x[22] GPIO_x[24]
32 GPIO_x[27] GPIO_x[23] GPIO_x[25]
33 GPIO_x[28] GPIO_x[24] GPIO_x[26]
34 GPIO_x[29] GPIO_x[25] GPIO_x[27]
35 GPIO_x[30] GPIO_x[26] GPIO_x[28]
36 GPIO_x[31] GPIO_x[27] GPIO_x[29]
37 GPIO_x[32] GPIO_x[28] GPIO_x[30]
38 GPIO_x[33] GPIO_x[29] GPIO_x[31]
39 GPIO_x[34] GPIO_x[30] GPIO_x[32]
40 GPIO_x[35] GPIO_x[31] GPIO_x[33]
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Bit-serial data transfers

▶ Moore’s law has been running for some time now. Space on a chip
become very inexpensive, pins and interconnections have not.

▶ Many devices have relatively low data rates. Maybe 1M 8 or 16-bit
words per second.

▶ Modern run-of-the-mill digital drivers often can drive PCB-traces
and actual wires at rates of 50 Mbs and often higher.

▶ For many of the synchronous bit-serial protocols everything is edge
driven. The inter/intra clock rates do not have to be constant!
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Clock domain crossings

“A clock domain crossing occurs whenever data is transferred
from a flop driven by one clock to a flop driven by another
clock.” Saurabh Verna
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CDC references

▶ Understanding clock domain crossing issues, Saurabh Verna, EE
Times–India, December 2007.

▶ Clock Domain Crossing (CDC) Design & Verification Techniques
Using System Verilog, Clifford E. Cummings.

▶ http://www.fpga4fun.com/CrossClockDomain.html.
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Metastability and mitigation

�EE Times-India | December 2007 | eetindia.com

By Saurabh Verma
Engineering Manager
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Atrenta

Introduction
SoCs are becoming more com-
plex these days. A lot of func-
tionality is being added to chips 
and data is frequently transferred 
from one clock domain to anoth-
er. Hence, clock domain crossing 
verification has become one of 
the major verification challenges 
in deep submicron designs. 

A clock domain crossing 
occurs whenever data is trans-
ferred from a flop driven by one 
clock to a flop driven by another 
clock. 

In Figure 1, signal A is 
launched by the C1 clock do-
main and needs to be captured 
properly by the C2 clock domain. 
Depending on the relationship 
between the two clocks, there 
could be different types of prob-
lems in transferring data from 
the source clock to the destina-
tion clock. Along with that, the 
solutions to those problems can 
also be different. 

Traditional methods like 
simulation and static timing 
analysis alone are not sufficient 
to verify that the data is trans-
ferred consistently and reliably 
across clock domains. Hence, 
new verification methodologies 
are required, but before devising 
a new methodology it is impor-
tant to understand the issues re-
lated to clock domain crossings 
properly. Different types of clock 
domain crossings are discussed 
here along with the possible is-
sues encountered in each one of 
them and their solutions. A new 
verification methodology is then 
proposed which will ensure 
that data is transferred correctly 
across clock domains. 

In all the subsequent sec-

tions, the signal names shown 
in Figure 1 are directly used. For 
example, C1 and C2 imply the 
source and destination clocks re-
spectively. Similarly A and B are 
used as source and destination 
flop outputs respectively. Also, 
the source and destination flops 
are assumed to be positive edge 
triggered. 

Clock Domain Crossing Issues 
This section describes three main 
issues, which can possibly occur 
whenever there is a clock do-
main crossing. The solutions for 
those issues are also described. 

A. Metastability
Problem. If the transition on sig-
nal A happens very close to the 
active edge of clock C2, it could 
lead to setup or hold violation at 
the destination flop “FB”. As a re-
sult, the output signal B may os-
cillate for an indefinite amount of 
time. Thus the output is unstable 
and may or may not settle down 
to some stable value before the 
next clock edge of C2 arrives. This 
phenomenon is known as meta-
stability and the flop “FB” is said to 
have entered a metastable state. 

Metastability in turn can have 
the following consequences 
from a design perspective: 

1. If the unstable data is fed to 
several other places in the 
design, it may lead to a high 
current flow and even chip 
burnout in the worst case. 

2. Different fan-out cones may 
read different values of the 
signal, and may cause the 
design to enter into an un-
known functional state, lead-
ing to functional issues in the 
design. 

3. The destination domain out-
put may settle down to the 
new value or may return to 
the old value. However, the 
propagation delay could be 
high leading to timing is-
sues. 

For example, see Figure 2. 
If the input signal A transitions 
very close to the posedge of 
clock C2, the output of the des-
tination flop can be metastable. 
As a result it can be unstable and 
may finally settle to 1 or 0 as de-
picted by signals B1 and B2. 

Solution. Metastability prob-
lems can be avoided by adding 
special structures known as 
synchronizers in the destination 
domain. The synchronizers allow 
sufficient time for the oscilla-
tions to settle down and ensure 
that a stable output is obtained 

in the destination domain. A 
commonly used synchronizer 
is a multi-flop synchronizer as 
shown in Figure 3. 

This structure is mainly used 
for single and multi-bit control 
signals and single bit data sig-
nals in the design. Other types 
of synchronization schemes are 
required for multi-bit data sig-
nals such as MUX recirculation, 
handshake, and FIFO. 

B. Data Loss
Problem. Whenever a new source 
data is generated, the destination 

Understanding clock domain 
crossing issues 

CloCks

1. Clock domain crossing

2. Metastability has consequences.

3. Multi-flop synchronization.

▶ In theory, a flip-flop can take a very
long time to decide.

▶ It is not possible to guarantee that a
metastable state will not occur.

▶ Fast logic and slow clock rates help,
but . . . .

▶ It is possible to reduce the probability
of a metastable state to a very small
number.

▶ A two state synchronizer is often
adequate. However, for reliability
applications (e.g., aircraft control
systems) use three or more.

From: Understanding clock domain crossing issues, Saurabh.
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Metastability cause

clock a

clock bQ

Q

setup time
hold time

ts th

clock b

X

X

▶ It takes time for things to get ready to happen and then to happen.

▶ If there isn’t adequate time, things go wrong.

▶ In theory, it can take a very long time to settle down.

▶ Metastability can be a problem in a FPGA’s clock distribution
network even in a single clock domain.

▶ Quartus II’s timing analyzer checks to whether or not the required
setup and hold times are met.
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Generic synchronous bit-serial send/receive

shift register

control logic
clock_a

frame_sync

transmitter receiver

shift_clock

bit_serial_data

control logic

shift register

parallel_data

received_flag

clock_b
?

connection

register

▶ The transmitter is in charge and relatively easy to design.

▶ The design of the receiver is the challenge.

▶ Where should the clock boundary be?
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An answer is ?

▶ As late as possible.

▶ When using a well designed protocol, it should be possible to clock
the receiver and generate the received_flag using the supplied
clock and frame synchronization signals.

▶ The only signal that needs metastabilty protection should be the
received_flag.

▶ If this is not the case, the protocol is not properly designed or the
receiver designer needs to think more.

▶ The receiver is double buffered allowing a full frame time in which
to retrieve the received value.

▶ I use an asynchronous clear from the b time domain on the flag bit.
This avoids metastability problems.
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Commonly encountered protocols

▶ SPI (serial peripheral interface)

▶ Not standardized.
▶ Supported by many devices such as A/D and D/A chips.

▶ I2S (Inter-IC, Integrated Interchip Sound)

▶ Used to interconnect audio devices together.

▶ I2C (Inter-Integrated Circuit)

▶ Multi-master, low speed with addressability.

▶ UART (Univeral asynchronous receive/transmit)

▶ Dates from the 1920s. Has been somewhat updated.
▶ Uses pre-agreed upon clock rate.

There are many, many more. Some are even “one-wire” and self clocking.
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The SPI protocol

▶ A synchronous bit-serial protocol.

▶ Originated by Motorola but not standardized.

▶ Many devices use a SPI-like protocol. For example, the PMod A/D
and D/A converter modules.

▶ The Wikipedia has a nice discussion:

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

▶ Meant to be easy to implement and work with.

▶ Typical transfer size are 8 and 16 bits.

▶ Bi-directional. Send a word, receive a word, with latency.

▶ A relevant learning document is the C5515 SPI User’s Guilde,
SPRUFO3.
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SPI timing example
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The clock polarity and phase can be specified through the CKPn and CKPHn bits of the SPI device
configuration register (SPIDC). You can program a different clock polarity and phase for each slave.

Table 2. Definition of SPI Modes

SPI Mode Clock Polarity Clock Phase

0 Active low (base value of clock is low) Data shifted out on the falling edge, input captured on the rising edge.

1 Active low (base value of clock is low) Data shifted out on the rising edge, input captured on the falling edge.

2 Active high (base value of clock is high) Data shifted out on the rising edge, input captured on the falling edge.

3 Active high (base value of clock is high) Data shifted out on the falling edge, input captured on the rising edge.

The timing diagrams for the four possible SPI modes are shown in Figure 4 through Figure 7. Please note
the following about these figures:

• Although the timing diagrams show an 8-bit character transfer, the character length can be set to 1
through 32 bits. The character length is selected with the CLEN bits SPICMD2.

• The number of characters transferred during one slave access is specified through the FLEN bits of
SPICMD1. The figures show the case of FLEN = 0 (1 character).

• The polarity of the chip select pins (SPI_CSn) can be configured through the CSPn bits of SPIDCR1
and SPIDCR2. The figures show a chip select polarity of active low.

• The SPI module automatically delays the first clock edge with respect to the activation of the SPI_CSn
pin by half a SPI_CLK cycle plus a system clock cycle. Additional clock delay cycles can be added
using the data delay bits (DDn) of SPIDCR1 and SPIDCR2. The figures below show the case of DDn =
0 (zero data delay) and CLKDV is odd.

Figure 4. SPI Mode 0 Transfer (CKPn = 0, CKPHn = 0)

Figure 5. SPI Mode 1 Transfer (CKPn = 0, CKPHn = 1)

Figure 6. SPI Mode 2 Transfer (CKPn = 1, CKPHn = 0)
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Figure 1. Serial Peripheral Interface (SPI) Block Diagram

1.4 Supported Use Case Statement

The SPI is intended for communication between the DSP and up to four SPI-complaint slave devices.
Typical applications include an interface to external I/O or peripheral expansion via devices such as shift
registers, display drivers, SPI EEPROMs, and analog-to-digital converters. The programmable
configuration capability of the SPI allows it to interface to a variety of SPI format devices without the need
for glue logic.

A typical SPI interface with a single slave device is shown in Figure 2. The DSP controls the flow of
communication by providing shift-clock (SPI_CLK) and slave-select signals (SPI_CSn).

Figure 2. Typical SPI Interface

1.5 Industry Standard(s) Compliance Statement

The SPI does not conform to a specific industry standard.
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▶ C5515 SPI mode 2 is shown.

▶ The TI C5515 SPI can only be a master!

▶ We can design either master or slave
interfaces in the FPGA.

From TI’s SPRUFO3.pdf.

EECS 452 – Fall 2014 Lecture 5 – Page 119/143 Tuesday – September 16, 2014



My DIY SPI timing example
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The I2S protocol

▶ Used by CODEC chips in the C5515 and the DE2-70 for data transfer.

▶ Several modes of operation, stereo, mono, etc.

▶ When C5515 is a master the word rate is fixed and constant. When
C5515 is slave the edge timings from the FPGA rule!

▶ A reasonable use is an reverse channel from FPGA to C5515.

▶ A useful reference is the C5515 I2S User’s guide, SPRUFX4.
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I2S timing example
LD(n) LD(n+1)

I2S FS

I2S CLK

DATA -
1

-
2

-
3

2 1 03 -
1

-
2

-
3

2 1 03 -
1

-
2

N N N N N N N N N
-
3

RD(n)

LEFT CHANNEL RIGHT CHANNEL

LD(n) = n'th sample of left channel data RD(n) = n'th sample of right channel data

LD(n) LD(n+1)

I2S FS

I2S_CLK

DATA -
1

-
2

-
3

2 1 03 -
1

-
2

-
3

2 1 03 -
1

-
2

N N N N N N N N N
-
3

3

RD(n)

LEFT CHANNEL RIGHT CHANNEL

LD(n) = n'th sample of left channel data RD(n) = n'th sample of right channel data

LD(n) LD(n+1)

I2S_FS

I2S_CLK

DATA -
1

-
2

-
3

2 1 03 -
1

-
2

-
3

2 1 03 -
1

-
2

N N N N N N N N N
-
3

3

RD(n)

LEFT CHANNEL RIGHT CHANNEL

LD(n) = n'th sample of left channel data RD(n) = n'th sample of right channel data

Architecture www.ti.com

As shown in Figure 1-7, the typical I2S format utilizes left-justified format with a data delay of one bit and
low frame synchronization pulse for left channel data and high pulse for right channel data. Serial data
sent by the transmitter may be synchronized with either the trailing or the leading edge of serial clock
I2Sn_CLK. However, the serial data must be latched by the receiver on the leading edge of I2Sn_CLK. In
this format, the MSB of the left channel is valid on the second leading edge of the bit-clock, I2Sn_CLK
after the trailing edge of the frame-synchronization clock, I2Sn_FS. Similarly the MSB of the right channel
is valid on the second leading edge of I2Sn_CLK after the leading edge of I2Sn_FS.

Figure 1-7. Timing Diagram for Left-Justified Mode with Inverse Frame-Sync Polarity and One-Bit Delay

Figure 1-8. Timing Diagram for I2S Mode

Figure 1-9. Timing Diagram for I2S Mode with Inverse Bit-Clock Polarity

1.2.5.2 DSP Format

In DSP format, the trailing edge of the frame-synchronization pulse, I2Sn_FS, starts the data transfer with
the left channel data first and immediately followed by the right channel data. Each data bit is valid on the
trailing edge of the bit-clock, I2Sn_CLK. The first data sample can be delayed by 1 bit or 2 bits after the
trailing edge of I2Sn_FS. With one bit delay, the MSB coincides with the trailing edge of I2Sn_FS. With
two bit delay, the MSB follows the trailing edge of I2Sn_FS after one I2Sn_CLK. Figure 1-10 illustrates
DSP format operation with a one-bit data delay.
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Table 1-1. I2S Signal Descriptions

Name Signal Description

I2Sn_CLK INPUT /OUTPUT I2S Clock

I2Sn_FS INPUT /OUTPUT I2S Frame Sync Clock

I2Sn_DX OUTPUT I2S Data Transmit

I2Sn_RX INPUT I2S Data Receive

The diagram below is a typical connection between I2S interface to an audio or voice-band Codec.

Figure 1-3. Block Diagram of I2S Interface to Audio/Voice Band Codec

1.2.3.1 Pin Multiplexing

Depending on the I2S bus being used, the DSP should be configured to route those I2S signals to the
multiplexed Serial Port 0, Serial Port 1, or Parallel Port pins by writing to the External Bus Selection
Register (EBSR). For more information on pin multiplexing, see the device-specific DSP system guide.

NOTE: Configuring the EBSR to route I2S0 or I2S1 signals to Serial Port0 or Serial Port1
respectively also routes those I2S interrupts to the CPU (see Section 1.2.10).

1.2.4 Frame Clock Timing Requirement in Slave Mode

When configured as the slave, frame clock (I2S_FS) is required to be latched on both edges of the bit
clock (I2S_CLK), which are generated by the external master device. This imposes an additional
constraint on the timing of I2S_FS as illustrated in Figure 1-4. The generated frame clock should meet the
specified setup and hold requirements with respect to the sampling edge of the generated bit clock. For
actual timing requirements, see the I2S section of the TMS320C55xx data sheet. These constraints imply
that the frame clock transitions should occur in the time window as indicated by the shaded region in the
figure.
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▶ C5515 I2S mode is shown. Variations
exist. Monaural uses only one channel.

▶ When C5515 is master need RC filter in
the DOUT line due to timing problem.

From TI’s SPRUFX4.pdf.
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The I2C protocol

▶ Eight data bits and eight bits address plus two handshake bits.

▶ Ack bit is driven by addressed device, if present and ready.

▶ Used by the CODEC in the DE2-70 for configuration.

▶ The FPGA CODEC and NTSC video decoder devices are configured
using I2C.

▶ We have a couple of CMOS digital cameras that are I2C configured.
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The I2C connection and timing
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2 Peripheral Architecture

The I2C peripheral consists of the following primary blocks:

• A serial interface: one data pin (SDA) and one clock pin (SCL).
• Data registers to temporarily hold receive data and transmit data traveling between the SDA pin and

the CPU or the DMA2 controller.
• Control and status registers.
• A peripheral data bus interface to enable the CPU and the DMA2 controller to access the I2C

peripheral registers.
• A clock synchronizer to synchronize the I2C input clock (from the processor clock generator) and the

clock on the SCL pin, and to synchronize data transfers with masters of different clock speeds.
• A prescaler to divide down the input clock that is driven to the I2C peripheral.
• A noise filter on each of the two pins, SDA and SCL.
• An arbitrator to handle arbitration between the I2C peripheral (when it is a master) and another master.
• Interrupt generation logic, so that an interrupt can be sent to the CPU.
• DMA event generation logic, so that activity in the DMA2 controller can be synchronized to data

reception and data transmission in the I2C peripheral.

Figure 1 shows the four registers used for transmission and reception. The CPU or the DMA controller
writes data for transmission to ICDXR and reads received data from ICDRR. When the I2C peripheral is
configured as a transmitter, data written to ICDXR is copied to ICXSR and shifted out on the SDA pin one
bit at a time. When the I2C peripheral is configured as a receiver, received data is shifted into ICRSR and
then copied to ICDRR.

2.1 Bus Structure

Figure 1 shows how the I2C peripheral is connected to the I2C bus. The I2C bus is a multi-master bus
that supports a multi-master mode. This allows more than one device capable of controlling the bus that is
connected to it. A unique address recognizes each I2C device. Each I2C device can operate as either
transmitter or receiver, depending on the function of the device. Devices that are connected to the I2C bus
can be considered a master or slave when performing data transfers, in addition to being a transmitter or
receiver.

NOTE: A master device is the device that initiates a data transfer on the bus and generates the
clock signals to permit that transfer. Any device that is addressed by this master is
considered a slave during this transfer.

An example of multiple I2C modules that are connected for a two-way transfer from one device to other
devices is shown in Figure 2.

Figure 2. Multiple I2C Modules Connected
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2.6 Serial Data Formats

Figure 7 shows an example of a data transfer on the I2C-bus. The I2C peripheral supports 2-bit to 8-bit
data values. Figure 7 shows a typical I2C data transfer using (BC = 000 in ICMDR). Each bit put on the
SDA line is equivalent to one pulse on the SCL line. The data is always transferred with the
most-significant bit (MSB) first. The number of data values that can be transmitted or received is
unrestricted; however, in most systems, the transmitter and receiver have agreed upon the number of data
values to transfer before transfer begins.

The I2C peripheral supports the following data formats:

• 7-bit addressing mode.
• 10-bit addressing mode.
• Free data format mode.

Figure 7. I2C Peripheral Data Transfer

2.6.1 7-Bit Addressing Format

In the 7-bit addressing format (Figure 8), the first byte after a START condition (S) consists of a 7-bit slave
address followed by a R/W bit. The R/W bit determines the direction of the data.

• R/W = 0: The master writes (transmits) data to the addressed slave.
• R/W = 1: The master reads (receives) data from the slave.

An extra clock cycle dedicated for acknowledgment (ACK) is inserted after the R/W bit. If the slave inserts
the ACK bit, n bits of data from the transmitter (master or slave, depending on the R/W bit) follow it. n is a
number from 2 to 8 that the bit count (BC) bits of ICMDR determine. The receiver inserts an ACK bit after
the data bits have been transferred.

Write a 0 to the expanded address enable (XA) bit of ICMDR to select the 7-bit addressing format.

Figure 8. I2C Peripheral 7-Bit Addressing Format (FDF = 0, XA = 0 in ICMDR)

n = The number of data bits (from 2 to 8) specified by the bit count (BC) field of ICM DR.

2.6.2 10-Bit Addressing Format

The 10-bit addressing format (Figure 9) is like the 7-bit addressing format, but the master sends the slave
address in two separate byte transfers. The first byte consists of 11110b, the two MSBs of the 10-bit slave
address, and R/W = 0 (write). The second byte is the remaining 8 bits of the 10-bit slave address. The
slave must send acknowledgment (ACK) after each of the two byte transfers. Once the master has written
the second byte to the slave, the master can either write data or use a repeated START condition to
change the data direction. (For more information about using 10-bit addressing, see the Philips
Semiconductors I2C-bus specification.)

Write 1 to the XA bit of ICMDR to select the 10-bit addressing format.
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From TI’s SPRUFO1A.
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The UART protocol

▶ Universal asynchronous receiver/transmitter (UART).

▶ The UART has been around for a long time.

▶ Asynchronous, clock is assumed. No clock domain boundary to
cross!

▶ Usually eight data bits plus optional parity. Two or three support
bits.

▶ There exist “standard” baud (bits/second) rates.

▶ Designed to be robust to clock offset/drift.

▶ http://en.wikipedia.org/wiki/Universal_asynchronous_
receiver/transmitter.
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The UART frame

b0 b1 b2 b3 b4 b5 b6 b7

start bit stop bit

mark

space

time

▶ Frame start is detected by a mark to space transition. (Assuming the
system is idling in mark.)

▶ A one bit time offset is used to sample and verify that a space bit is
present.

▶ The next 8 bits are sampled using a time step of one bit time.

▶ The last bit is a mark and is called a stop bit. Multiple stop bits
might be present.

▶ The clocks between transmitter and receiver can be off frequency by
as much as about 5%.

EECS 452 – Fall 2014 Lecture 5 – Page 126/143 Tuesday – September 16, 2014



The FT232R UART/USB breakout

▶ Used to communicate UART data (8-bit) over
USB.

▶ Powered by the USB connector’s 5 Volts.
Regulates this down to 3.3 Volts.

▶ Supports RTS/CTS handshake.

▶ Max baud clock is counted down from 3 Mbs.
Integer divide factor.

▶ I’ve successfully used these at 1.5 Mbs and 3.0
Mbs.

▶ I’m using FTDI’s D2XX direct drivers on the
RPi (the USB end). I located a special build for
RPi’s hard float. FTDI’s V1.1.12 only supports
soft float. The HF and SF calling sequences are
not compatible.
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Bit-serial comments

▶ The PMod boards are pretty much intended for use on FPGA boards
made by Digilent. The DE2-70/DE0-Nano breakout board allows
their use on these Terasic boards as well.

▶ Using an adapter card or cable one can plug a PMod A/D and/or
PMod D/A directly to a C5515 breakout board 6-pin connector. I’ve
tested using SPI and I2S.

▶ Once can implement your own serial protocol. A few semesters a
project (Seymour) bit-banged a four bit protocol between an FPGA
and the Raspberry Pi.
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Synchronizer module

// File name: synchronizer.sv
//
// 09Aug2012 .. version started .. K.Metzger
//

module synchronizer
(

input signal_in,
input clear_in,
output signal_out,
input clk);

logic [1:0] delay;

assign signal_out = delay[1];

always_ff@(posedge(clk), posedge(clear_in)) begin
if (clear_in) delay <= 0;
else delay <= {delay[0], signal_in};

end

endmodule
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The Digilent PMod-DA2 module
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The PMod-DA2 uses two National Semiconductor DAC121S101 12-bit
digital-to-analog converters with rail-to-rail output.

Uses a bit-serial interface. Maximum serial clock rate is 30 MHz.
Operates using supply voltages in the range 2.7V to 5.5V.

Figure from the PMod Digilent data sheet.
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The DAC121S101 D/A

Max serial clock : 30 MHz

Data uses offset binary.

Analog output updates on
16th shift clock falling edge.

From the National Semiconductor data sheet.

20114906

EECS 452 – Fall 2014 Lecture 5 – Page 131/143 Tuesday – September 16, 2014



How to make the D/A work

Here are some observations/guesses about control of the D/A. These
are based on the timing timing diagram and written signal
descriptions contained in the data sheet. Use of a state machine in the
D/A control logic is assumed.

▶ sync_n can remain high between updates going low when a serial
transfer is to start.

▶ The start of a serial transfer is detected by sampling sync_n
using the rising edges of sclk.

▶ Data bits are sampled on the falling edges of sclk.

▶ There is a counter in the D/A that loads D/A holding register
from the input shift register. Possibly on the 16th falling edge of
sclk.

▶ After loading the DAC register the state machine waits for the
next high to low transition on sync_n
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Starting simple with the D/A

A simple test is to run a counter and send the count values to the D/A
and observe the waveform. About as basic test you can do.

Check the schematic and data sheet to

▶ determine the part number.

▶ see how the part is designed into the board.

▶ find the PMod pin signal assignments.

Check the D/A data manual to determine

▶ how it works. Actually, to learn how to make it work.

▶ the signal timings.

▶ the mapping from digital input values to output voltages.
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The Digilent PMod-AD1 module
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The PMod-AD1 uses two National Semiconductor ADCS7476 12-bit
analog-to-digital converters supporting rail-to-rail input.

Uses a bit-serial interface. Maximum serial clock rate is 20 MHz. Operates
using supply voltages in the range 2.7V to 5.25V.

Figure from the PMod Digilent data sheet.
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The ADCS7476 A/D

Max serial clock : 20 MHz

Max sample rate: 1 MHz

Data uses offset binary.

Input switches from track to hold on
falling edge of the sync signal.

From the National Semiconductor data sheet.
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Comments

▶ Timing diagrams typically show what one can get away with not
necessarily best practice.

▶ Notice the runt SDATA digit. This is what can get away with. I
really wouldn’t design to cause this.

▶ Relative to the clock shown I started CSbar half a clock earlier.
This gives a more full data bit.

▶ The SDATA bits are sampled at the instant at which the sclk
falling edges are started.

▶ I can do this because I sample the bit at the same time as I start
the edge to fall. It takes time to fall and be recognized by the A/D
and then shift the next data bit. Generally the registers in the
FPGA have 0 ns hold time.
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DIY directed study DSP with FPGAs

▶ On Amazon, about $122.

▶ Uses Verilog, now includes some
VHDL.

▶ 930 pages.

▶ Published May 2014.

▶ Uses Quartus II web edition.

▶ Includes source code in appendices.

▶ Focuses on communications
applications.

▶ Signed fixed point and floating point
IEEE library examples.

▶ Overview on parallel all-pass IIR filter
design.

From the Amazon web site.
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FYI: Terasic DE0-Nano

http://www.terasic.com.
tw/cgi-bin/page/archive.
pl?Language=English&
CategoryNo=139&No=593

▶ 22,230 LEs, 32 MB SDRAM (mounted on back side), $79.

▶ 40-pin headers can match those on DE2-70.

▶ Has been used in past EECS 452 projects.

▶ Have a couple of units on-hand.

▶ Built in USB-blaster.
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DE0–Nano features

▶ Cyclone IV FPGA, 22,320 logic elements, 594 Kbits M4K memory, 66
embedded 18× 18 multipliers, 4 PLLs and 152 FPGA I/O pins.

▶ USB powered.

▶ Two 40-pin expansion headers.

▶ One 26-pin header provides 16 GPIO pins and analog input pins.

▶ 32 MB SDRAM, 2Kb I2C EEPROM.

▶ 8 green LEDs, 2 debounced push buttons and 4 DIP switches.

▶ 3 axis accelerometer.

▶ 8-channel, 12-bit A/D converter, 50 ksps to 200 ksps.

▶ 50 MHz oscillator.

▶ Nominal cost: $79, academic: $59. Shipping and currency exchange
fees can double the academic price.

▶ Digikey price: $82.80, plus shipping.
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DE2/DE2-70/DE0-nano support materials

Terasic makes available the schematics, user’s manual, demo source
code and other materials for their FPGA boards. Check out:

▶ DE2
http:

//www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=165&No=30&PartNo=4

▶ DE2-70
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=183&No=226&

PartNo=4

▶ DE0-nano
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=593&

PartNo=4

The links are “hot”. Sites that use long links are a pain!

It is recommended to at least look at the DE2-70’s user’s manual.
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A low cost competitor

There is actually quite a lot of competition.

Boards similar to Terasic’s but using Xilinx parts can be found at
http://Digilentinc.com.

Xilinx is the dominant FPGA manufacturer.

For example, the very low cost ($69 academic) BASYS2:

From the Digilent web site.
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Thoughts on DIY career development

Once you graduate, career development likely will be mostly DIY.

▶ Buy an evaluation board. The Terasic DE2/DE2-70/DE0-Nano are great
value. The Digilent Xilinx boards are also. I own two or more of each
manufacturer’s. Do something with them!

▶ Find useful information. There’s a lot of useful material available on the
web, and a lot that isn’t. Sorting can be a problem.

The next slide lists some potential starter books.

▶ I’ve made numerous web searches to find relevant articles, purchased old
texts and even read some. Collect!

▶ Join the IEEE. At least look at their technical group publications.

▶ Join or create a club. Find someone you can talk technical with.

▶ Volunteer teach.

In addition: Practice, practice, practice, . . .

EECS 452 – Fall 2014 Lecture 5 – Page 142/143 Tuesday – September 16, 2014



Starting a personal library

▶ The SystemVerilog standard. Available from the library in e-form.

▶ FPGA prototyping by xxxxx examples: Xilinx Spartan-3 version / Pong
P. Chu. Two versions, one where xxxxx is replaced by VHDL and the
other by Verilog. I own the VHDL version.

▶ Digital System Design with SystemVerilog, Mark Zwolinski, Prentice
Hall, 2010

▶ SystemVerilog for design : a guide to using SystemVerilog for
hardware design and modeling by Stuart Sutherland, Simon
Davidmann, Peter Flake ; foreword by Phil Moorby. Library copy is
missing but is available in e-form.

▶ B. Parhami, Computer Arithmetic: Algorithms and Hardware
Designs, 2nd edition, Oxford University Press, New York, 2010.
http://www.ece.ucsb.edu/~parhami/text_comp_arit.htm

▶ Digital Signal Processing with Field Programmable Gate Arrays
(Signals and Communication Technology), 3rd, Uwe Meyer-Baese.
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