
EECS 452 – Lecture 2

Today:
Sampling and reconstruction review
FIR and IIR filters
C5515 eZDSP
Direct digital synthesis

Reminders: HW 1 is due on tuesday.
PPI is due on Thurs (email to hero by 5PM)
Lab starts next week.

Last one out should close the lab door!!!!

Please keep the lab clean and organized.

The numbers may be said to rule the whole world of quantity, and the four rules

of arithmetic may be regarded as the complete equipment of the mathematician.

— James C. Maxwell
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Sampling and reconstruction

Here, as last time, F denotes Herzian freq. and f denotes Digital
freq.

Sampling is the part of the Analog-to-Digital Converter (ADC)
that converts cts time signal x(t) into discrete time signal
x[n] = X(nTs). Fs = 1/Ts is the sampling rate (samples/sec).

Reconstruction is the part of the Digital-to-Analog Converter
(DAC) that converts discrete time signal x[n] = x(nTs) to cts time
signal x(t). Fs = 1/Ts is the conversion rate.

Sampling and reconstruction are commonly combined into a
ADC/DAC device called the CODEC (Coder-Decoder). The C5515
and DE2 have audio CODECs on board.

CODEC’s work well as long as x(t) does not have significant energy
at frequencies above Fs/2 Hz
Can verify this condition using FT: X(F ) =

∫∞
−∞ x(t)e−j2πFtdt
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Simply bandlimited waveforms

Lowpass signal: Negligible energy (X(F ) = 0) for all |F | > B.
Single sided bandwidth is B Hz.

If sample x(t) at Fs > 2B samples/sec can exactly reconstruct.
(Nyquist sampling theorem)

Bandpass signal: Negligible energy outside of a band, B = F2 − F1

not containing 0 Hz.

If sample at Fs > 2B can exactly reconstruct. (bandpass sampling
theorema)

Note that for bandpass waveforms do not need Fs > 2F2!

asee http: www.eiscat.se:8080/usersguide/BPsampling.html
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Sampling & reconstruction for a sinusoid
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Cannot reliably reconstruct without knowing

input frequency range

Samples from
single period of
sinusoid

There are many
higher fre-
quency sinusoids
that could fit
samples.

⇒ For unambiguous reconstruction need at least 2 samples per cycle
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What happens when we sample?

Performing ideal sampling on an analog signal x(t) means the following:

xs(t) = x(t)p(t) =
∞∑

n=−∞

x(nTs)δ(t− nTs)

where p(t) is the pulse train
∑∞
n=−∞ δ(t− nTs) with sample spacing Ts.

P (F ) = F{p(t)} = T−1
s

∞∑
k=−∞

δ(F − k

Ts
)

Taking Fourier transform of xs(t) (“*” denotes convolution)

Xs(F ) = X(F ) ∗ P (F ) = X(F ) ∗
∞∑

k=−∞

δ(F − k

Ts
)

1

Ts

=
1

Ts

∞∑
k=−∞

X(F − k

Ts
)
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Frequency domain view of aliasing
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Where does “the” alias land?

What frequencies contain aliased components of a sampled signal?

Consider a sinusoidal signal x(t) at Fc Hz

x(t) = cos(2πFct) =
ej2πFct + e−j2πFct

2

with continuous Fourier transform (CTF)

X(F ) =
1

2
δ(F + Fc) +

1

2
δ(F − Fc)

If sample x(t) at frequency Fs, sampled signal has CTF

Xs(F ) =

∞∑
k=−∞

X(F−kFs) =
1

2

∞∑
k=−∞

δ(F+Fc−kFs)+δ(F−Fc−kFs)

Conclude: frequency Fc will alias to the frequencies {Fc ± kFs}k 6=0.
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Relation between FT, DTFT, and DFT of xs
Consider the Fourier transform XWFT (F ) of xs(t) over the window
t ∈ [0, (N − 1)Ts] (contains N samples)

XWFT (F ) =

∫ (N−1)Ts

0

xs(t)e
−j2πFtdt =

N−1∑
n=0

x[n]e−j2πFnTs

XDTFT (f) = DTFT(x[n]) =

N−1∑
n=0

x[n]e−j2πfn

XDFT (k) = DFT(x[n]) =

N−1∑
n=0

x[n]e−j2π
k
N n

→ XDTFT (f) = XWFT (fFs) by identifying F/Fs = f (Fs = 1/Ts).

→ XDFT (k) = XDTFT

(
k
N

)
= XWFT

(
k
N Fs

)
.
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Units for Herzian, digital, and normalized

digital frequency

Units typically used to describe baseband frequency range:

units range limits

F Hz Fs −Fs/2 ≤ F < Fs/2

f normalized Hz 1 −1/2 ≤ f < 1/2

ω normalized radians 2π −π ≤ ω < π
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Comments on sampling

The frequency Fs/2 (Hz) is called the Nyquist frequency.

Given a real valued lowpass spectrum with bandwidth, B the sample
frequency equal to 2B is often called the Nyquist sample rate.

In practice one should sample at a rate of at least two or three times the
Nyquist rate.

Common sample rates:

standard telephone system 8 kHz
wideband telecommunications 16 kHz
home music CDs 44.1 kHz
professional audio 48 kHz
DVD-Audio 192 kHz
instrumentation, RF, video extremely fast
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The anti-alias filter

Anti-alias filter H is an analog LPF with bandwidth Fs/2 applied
to x(t) before sampling.

Anti-alias filter eliminates frequencies that would otherwise be
aliased into the baseband Fs/2 ≤ F ≤ Fs/2.

Anti-alias filters need to have sharp transition band at their cutoff
frequency Fs/2.

The samplers of the CODECs on the DE2 and C5515 boards have
sophisticated built-in anti-alias filters. The cutoff frequencies
change with the selected sample rate.
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Reconstruction: using interpolation

Assume that bandwidth B signal x(t) has been sampled at Nyquist
(Fs = 2B) giving samples x[n].

Interpolate the samples x[n] = x(nTs) using the cardinal series (FT of
ideal low-pass filter (LPF) with BW B):

x(t) =

∞∑
n=−∞

x(nTs) · sinc(2πB(t− nTs))

I This is called the cardinal series expansion of x(t)

I This perfectly recovers the input signal x(t), per Nyquist sampling
theorem

I Cardinal series reconstruction is not causal: output x(t) depends on
all past and future samples x(nTs).

I A simpler sample and hold reconstruction is used in practice - but
requires anti-imaging filter (will study this later)
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Discrete time LTI filters
The output y[n] of discrete time LTI filter with input x[n] is

y[n] = h[n] ∗ x[n] =
∞∑

k=−∞

h[n− k]x[k] =

∞∑
k=−∞

h[k]x[n− k] .

Take DTFT to obtain equivalent frequency domain relation:

Y (f) = H(f)X(f), f ∈ [−1/2, 1/2]

where Y (f), X(f), H(f) are DTFTs of y[n], x[n], h[n]

I h[n] is the impulse response: h[n] = y[n] when x[n] = δ[n]

δ[n] =

{
1, n = 0

0, n 6= 0

I H(f) is the transfer function of LTI

I Often LTI I/O relation is expressed in z-transform domain

Y (z) = H(z)X(z), z ∈ C
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The z-transform

The z-transform of a discrete set of values, x[n], −∞ < n <∞, is
defined as

XZ(z) = Z(x[n]) =

∞∑
n=−∞

x[n]z−n

where z is complex valued. The z transform only exists for those
values of z where the series converges. z can be written in polar
form as z = rejθ.

r is the magnitude of z and θ is the angle of z. When r = 1, |z| = 1
is the unit circle in the z-plane.

When x[n] = 0 for n < 0, X(z) reduces to single-sided z-transform

XZ(z) = Z(x[n]) =

∞∑
n=0

x[n]z−n

Note: often simply written without the subscript as X(z)
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Elementary properties of z-transform

XZ(z) = Z{x[n]} =

∞∑
n=−∞

x[n]z−n

I If X(z), Y (z) are z-transforms of x[n], y[n]

Z{ax[n] + by[n]} = aX(z) + bY (z)

I If X(z) is z-transform of x[n] then

Z{x[n− k]} = z−kZ{x[n]}

I If XZ(z) and XDTFT (f) the z-transform and DTFT of x[n]

XDTFT (f) = XZ(ej2πf )
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FIR digital filters

Finite impulse response (FIR) digital filters produce output y[n] sam-
ples as linear combination of the most recent input samples x[n]

y[n] = b0x[n]+b1x[n−1]+b2x[n−2]+· · ·+bMx[n−M ] =

M∑
k=0

bkx[n−k]

M is called the order of the FIR filter.

Note that output depends on the M + 1 most recent input samples

FIR filters are sometimes called ”moving window summation filters”
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Impulse response of FIR filter

y[n] =

M∑
k=0

bkx[n− k] (1)

Recall: impulse response h[n] is filter output when input x[n] = δ[n]

δ[n] =

{
1, n = 0

0, n 6= 0

From (1) we obtain

h[n] =

{
bn, n = 0, . . . ,M

0, n < 0, n > M

as the impulse response of the FIR filter.
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FIR (Direct Form) block diagram

Time domain input-output relation:

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bMx[n−M ]

in z-domain

Y (z) = (b0 + b1z
−1 + · · ·+ bMz

−M )X(z)

Transfer function (z-domain)

H(z) =
Y (z)

X(z)
= b0 + b1z

−1 + b2z
−2 + · · ·+ bMz

−M

Polynomial over z−1 ∈ C: has M zeros

z−1 corresponds to the ”unit delay operator”, X(z)z−1

is the z-transform of x[n− 1].

-1
-1

0
�
2

-1
��
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FIR frequency transfer function

Z-domain transfer function of M -th order FIR filter with
coefficients {bn}Mn=0

Hz(z) =

M∑
n=0

h[n]z−n =

M∑
n=0

bnz
−n =

Y (z)

X(z)

To get (digital) frequency domain transfer function you evaluate
Hz(z) on the unit circle z = ej2πf , f ∈ [−1/2, 1/2]

H(f) = Hz

(
ej2πf

)
=

M∑
n=0

h[n]e−j2πfn

or, less compactly,

H(f) = h[0] + h[1]e−j2πf + · · ·+ h[M ]e−j2πfM .
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IIR (Infinite Impulse Response) Filter

By contrast, in an infinite impulse response
(IIR) filter, output depends on not only cur-
rent and previous M input samples, but also
the previous N filter outputs.

y[n] = b0x[n] + b1x[n− 1] + . . .

+ bMx[n−M ]

− a1y[n− 1]− · · · − aNy[n−N ]

Transfer function

H(z) =
Y (z)

X(z)

=
b0 + b1z−1 + . . . + bMz−M

1 + a1z−1 + . . . + aNz−N

A ratio of polynomials: has N poles and M

zeros as function of z−1 ∈ C.
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Different types of filter transfer functions

äçïé~ëë ÜáÖÜé~ëë

Ä~åÇé~ëë
Ä~åÇ=êÉàÉÅí

EåçíÅÜF

Ñ Ñ

ÑÑ

M M

M M

öeEÑFö öeEÑFö

öeEÑFööeEÑFö

EECS 452 – Fall 2014 Lecture 2 – Page 22/45 Thurs – 9/4/2014



Lowpass filter design template
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Equiripple LPF FIR filter design example

I Low pass filter.

I Fs=48000 Hz.

I Bandpass ripple: ±0.1 dB.

I Transition region 3000 Hz to 4000 Hz.

I Minimum stop band attenuation: 80 dB.
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Matlab’s fdatool’s solution
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fdatool’s magnitude, phase and group delay

EECS 452 – Fall 2014 Lecture 2 – Page 26/45 Thurs – 9/4/2014



What is group delay?
A digital filter transfer function has a magnitude and a phase

H(f) = |H(f)| ejθ(f) .

The filter’s group delay at frequency f is defined as

τ(f) = − 1

2π

dθ(f)

df

Linear phase filters: θ(f) = −2πfτ , where τ is independent of frequency

I have group delay is the same at all frequencies

I shift each frequency component of input by same amount of delay

I have group delay proportional to the negative slope of the phase
θ(f)

The group delay of a digital filter is often expressed in seconds

τ =

(
− 1

2π

dθ(f)

df

)
Ts

(Recall: f = F/Fs = FTs).
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Why is group delay important?

Constant group delay is important in digital communications.

A system not having constant group delay distorts digital pulse
waveforms. This smears them together and makes it difficult to
make bit decisions.

Many communication systems have a special circuit that can
adaptively equalize channel phase response to obtain a constant
group delay. To do so it must measure it. This leads to the use of a
training waveform.

FIR filters can be designed to give yield constant group delay as
measured from input x(t) to output y(t) of the DSP+CODEC
system.
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C55xx implementation using TI’s DSP Library

dsplib: TI’s implementations of DSP functions for the C55xx

”These routines are typically used in computationally intensive
real-time applications where optimal execution speed is critical. By
using these routines you can achieve execution speeds considerable
faster than equivalent code written in standard ANSI C language.”

Functional categories of dsplib routines

Fast-Fourier Transforms (FFT)
Filtering and convolution
Adaptive filtering
Correlation
Math
Trigonometric
Miscellaneous
Matrix

(TMS320C55xx DSP Library Programmers Reference (spru422))

EECS 452 – Fall 2014 Lecture 2 – Page 29/45 Thurs – 9/4/2014



TI’s DSPlib FIR
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TI’s DSPlib conventions
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dbuffer is a circular buffer

http://www.ti.com/lit/an/spra645a/spra645a.pdf

Conventional buffer (shift old samples) Circular buffer (shift pointer)

Circular buffer is more power and computation efficient for FIR
filtering

y[n] =

M∑
k=0

bnx[n− k]
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TI’s FIR notes

•
•
•
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TI’s FIR notes (cont.)

•
•
•

•
•
•
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C5515 eZDSP
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C5515 eZDSP Description

The C5515 is a member of TI’s TMS320C5000 fixed-point Digital
Signal Processor (DSP) product family and is designed for
low-power applications. It is based on the TMS320C55x DSP
generation CPU processor core.

TI’s list of C5515 DSP applications include:

Wireless Audio Devices
Echo Cancellation Headphones
Portable Medical Devices
Voice Applications
Industrial Controls
Fingerprint Biometrics
Software Defined Radio
http://processors.wiki.ti.com/index.php/C5515

In this lecture we focus on the CODEC.
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Direct Digital Synthesis (DDS) basic idea

A method for digitally creating sine waves of arbitrary frequency by
reading samples out of memory.

I We store a sine table in ROM (read-only memory).

I These values are samples from a single period.
I The number of values we can store/access is determined by the

size of the address we use.
I Say we use a B-bit address, so we can store 2B values.
I The number of values determines the resolution of the table.
I These values are frequency-less.

I Now let’s read out these values at a certain speed.

I Say x values per second.
I The output (after D/A processing) now form a waveform of

frequency ???

I DDS idea: as long as we can arbitrarily control the speed at which
we read/drive out these values, we can generate waveforms of
arbitrary frequency.
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DDS: read out samples using a counter
Let’s use a binary counter, say BA bits.

I Driven by a fs Hz clock: counter increments once per tick.

I Use the counter value to address the sine table, also BA bits.

I So what is the output frequency?

olj
ï~îÉÑçêã

í~ÄäÉ
aL^

_^ _a

~å~äçÖ
çìíéìí

Ñë

ÅçìåíÉê

I When the counter wraps around, we start reading from the
beginning of the sine table, i.e., the next period.

I The time it takes to finish one period is simply the time it takes to
count to maximum: 2BA/fs seconds.

I Output frequency: fs/2
BA .
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DDS: increasing the sinusoidal frequency

What if we want to increase the sinusoidal frequency without increasing
fs?

I We can try to make the counter increment by n at a time, instead
of 1. (We will see this can be done in a minute.)

I This way it wraps around in 2BA

n·fs seconds, an n-fold increase in
output frequency!

I However, if we are using a BA-bit sine table then we are skipping a
lot of samples!

I We only address 1 in every n samples of the sine table: lower
resolution and less D/A quality.

I But if this is what we do we can store fewer samples using a smaller
table.
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DDS: decreasing the sinusoidal frequency

What if we want to increase the sinusoidal period without decreasing fs?
Q. Can you make the counter count slower without changing fs?
A. Yes

I Keep the sine table BA-bit.

I Increase the counter to BFTV > BA bit.

I With the same clock, the counter now counts slower: it takes
2BFTV /fs seconds to wrap around.

I Use the highest BA bits of the counter value to address the sine
table.

I So it takes 2BFTV −BA ticks to move to the next sample, if the
counter increments by 1 per tick.

I Example: BFTV = 8, BA = 4. We have 16 samples in the
table. The counter counts to 255 before wrapping around. It
takes 16 counter increments to increase the table address by 1.

I The output frequency: fs/2
BFTV , a 2BFTV −BA -fold decrease!
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The DDS design that achieves both
Replace the counter with an accumulator and adder. Now can use steps larger than
1 in the increment.
Frequency tuning value (FTV) is the step size of increment.

Use more bits in the accumulator than in the ROM address. This gives finer
frequency resolution since output frequency can only be integer multiples of

fs
2BFTV

.

éÜ~ëÉ
~ÅÅìãä~íçê

ëáåÉ
í~ÄäÉ

aL^

cqs
_cqs _cqs _^ _a

~å~äçÖ
çìíéìí

ÑêÉèìÉåÅó
íìåáåÖ
î~äìÉ
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~ÇÇÉê

_cqs

Filter at D/A output not shown.

What is the output frequency? fo = FTV fs
2BFTV

.
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Results illustrated

Difference under different FTV values.

With BFTV = 8, BA = BD = 4, and fs = 214Hz. Assume output ranges from
[−1, 1]V.
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DDS discussion

Synthesized waveform is an approximation to an analog one. Need to
balance step size, clock rate, ROM size and number of bits.

I Output frequency:

I It has nothing to do with BA, as long as BA ≤ BFTV .
I It is only determined by how fast we accumulate/count the

integers, and how fast we wrap around.
I BA does determine the resolution of the table, and the quality

of D/A output.

I Hypothetically, what if BA > BFTV ?

I Then we have not reached the end of the table (a single
period) when counting wraps around.

I We will always be missing a segment of the period.
I Output waveform distorted, though frequency as desired.
I One solution is to use the higher BFTV bits of BA.

I The lowest frequency you can generate: fs
2BFTV

.
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DDS example
We can implement a direct digital sinewave synthesizer on the C5515 using
the codec’s sample clock. A number of values are possible, let’s use fs = 48
kHz. An unsigned long (32 bits) can be used as the accumulator, ac0. A
table of 256 samples of single period of a sinewave will be used in place of
the ROM. The output frequency will be

fo = FTV
48000

232
Hz.

For a desired fo the value of FTV can be found

FTV =
232fo
48000

.

For fo = 1000 Hz we have FTV= 89, 478, 485.333 · · · . If we round FTV
to the closest integer, then the error in fo will be

1

3

48000

232
≈ 3.7× 10−6 Hz.

About 4 parts in 109. Good enough for most applications and probably
much better than the crystal being used to generate the 48 kHz.
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Summary of what we covered today

I Sampling and reconstruction

I Fourier spectrum of sampled cts time signals
I Relation between windowed FT, DTFT, DFT
I Anti-aliasing filter

I FIR and IIR digital filters

I z-transform, frequency response, transfer function
I matlab’s fdatool for filter design, phase shift and group delay
I TI’s DSPlib FIR filter implementation

I Direct Digital Synthesis (DDS)

I Next: Finite precision arithmetic
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