
EECS 452 – Lecture 4

Today: Gate level arithmetic
Sequential logic

Announcements: Lab 2 starts next week.
Pre-project ideas are due today by 11:55PM.
PPI Comment period: Sat 6PM to Wed. 11:55PM
Hwk 2 due at beginning of class next week

Project teaming meeting: Next thurs 7-9PM Dow 3150

Last one out should close the lab door!!!!

Please keep the lab clean and organized.

Computers are good at following instructions, but not at reading your mind.

– D. Knuth
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Arithmetic at the signal/bit level

We have

I introduced the two’s complement number representation.

I discussed sign extension.

I discussed overflow.

I commented on 2’s complement overflow robustness.

Next we look in more detail at implementing addition, subtraction
and multiplication using basic gates. This sets the stage for doing
arithmetic in an FPGA like the DE2-70.
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Binary addition

Consider adding two 8-bit values a and b

a7 a6 a5 a4 a3 a2 a1 a0

+ b7 b6 b5 b4 b3 b2 b1 b0 .

For each bit position we form the sum of the two bits in that
position and add in any carry from the previous (lower index) bit
position. The carry into position 1 is 0.

c7 c6 c5 c4 c3 c2 c1 c0 0

a7 a6 a5 a4 a3 a2 a1 a0

+ b7 b6 b5 b4 b3 b2 b1 b0

c7 s7 s6 s5 s4 s3 s2 s1 s0
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Single bit binary addition

Matrix form of input/output map for 1-bit adder

a× b 0 1

0 0 1

1 1 0
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XOR accomplishes single bit addition

Tabular form of input/output
map for 1-bit adder

output inputs

S B A

0 0 0

1 0 1

1 1 0

0 1 1

• Logic operation is S = A ·B +A ·B

• XOR adder overflows the 1 bit addition.
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A single bit half adder

outputs inputs

Cout S B A

0 0 0 0

0 1 0 1

0 1 1 0

1 0 1 1

Two types of gates are used: AND and XOR.
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A single bit full adder unit (1/2)

outputs inputs

Cout S B A Cin

0 0 0 0 0

0 1 0 0 1

0 1 0 1 0

1 0 0 1 1

0 1 1 0 0

1 0 1 0 1

1 0 1 1 0

1 1 1 1 1

Three types of gates are used: AND, OR, and XOR.
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Equivalent 3-input XOR implementation (2/2)

outputs inputs

cout s b a cin

0 0 0 0 0

0 1 0 0 1

0 1 0 1 0

1 0 0 1 1

0 1 1 0 0

1 0 1 0 1

1 0 1 1 0

1 1 1 1 1
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Three types of gates are used: AND, OR, and 3-input XOR.
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Ripple carry adder – multiple-bit adder

ÅT

ÄN~T

ëM

ÅS ÅR

~R ~O ~N ~M~P~Q~S ÄOÄQ ÄP ÄMÄRÄT ÄS

ÅQ ÅP ÅO ÅN ÅM M

ëNëOëPëQëRëSëT

Intrinsically serial: cannot clock all of the FA’s at the same time
due to ripple delays

Execution time limited by the time required for carries to
propagate from least significant bit to most significant bit..
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Subtraction

To subtract b from a simply negate b and add. For two’s
complement numbers negation consists of complementing the
individual bits and adding one. The addition of one can be
accomplished by using a carry of one into bit position zero.

c7 c6 c5 c4 c3 c2 c1 c0 1

a7 a6 a5 a4 a3 a2 a1 a0

+ b7 b6 b5 b4 b3 b2 b1 b0

c7 s7 s6 s5 s4 s3 s2 s1 s0
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Ripple carry add/subtract
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ëìÄ

Sub is logical 0 for addition, logical 1 for subtraction.

sub b sub exor b

0 0 0

0 1 1

1 0 1

1 1 0

Exclusive-or gate is used as controlled buffer/inverter.
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Sequential operation—bit-serial arithmetic

Using a single one-bit full adder to perform multiple-bit
addition/subtraction using feedback.

I Used many years ago when logic was dearly expensive, bulky
and power hungry.

I Often used in hand held calculators.

I Generally requires less FPGA fabric area than parallel.

I Generally slower than parallel, but not necessarily.

I Dr. Metzger designed and implemented a PN sequence
correlator that adds 63 16-bit numbers in 25 clock cycles.

I Generally one trades longer execution time for smaller FPGA
footprint.
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Bit serial adder (1/2)
The basic element is a one-bit full adder with the carry bit fed back
through a register. Values are shifted through the adder starting least
significant bit first (see next slide)

ò
JN

Ä

~ ë

êÉëÉíê

Å~êêó

ëìã

Figure: Bit serial adder block diagram.

To subtract invert the bits of the value being subtracted and initialize
the carry bit to one.
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Bit serial adder (2/2)

~

Ä
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íç=M

Minimal logic. Can be clocked at high rates.

Execution time strongly influenced by word size.

Not shown is the control logic needed to step the operation. This
might be as simple as a counter.
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Bit serial add/subtract

~
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Minimal logic. Can be clocked at high rates.

Execution time strongly influenced by word size.

Adder 1-bit carry memory initialized depending on whether adding
or subtracting.
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Binary multiplication
Matrix form of truth table for 1-bit multiplier

a× b 0 1

0 0 0

1 0 1

Tabular form of truth table for 1-bit multiplier

output inputs

S B A

0 0 0

0 0 1

0 1 0

1 1 1

Note that this is equivalent to the logical AND operation.
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Recall unsigned and two’s complement values

A B-bit binary number is an ordered sequence of zero and one values:

(bB−1, bB−2, · · · , b1, b0).

The unsigned value represented by this sequence is

v = bB−12B−1 + bB−22B−2 + · · · + b121 + b020 =

B−1∑
i=0

bi2
i .

v can take on the values from 0 through 2B − 1 in steps of one.

The two’s complement value represented by this sequence is

v = −bB−12B−1 + bB−22B−2 + · · · + b121 + b020.

v can take on the values from −2B−1 through 2B−1 − 1 in steps of one.

Unsigned and two’s complement addition and subtraction use the same
logic. This is not necessarily so for multiplication.
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Unsigned binary multiplication

Consider the multiplication of the two 4-bit unsigned binary
numbers a = a3a2a1a0 and b = b3b2b1b0 giving the product
p = a× b. Using the standard paper and pencil method we would
write:

b0 × a3 a2 a1 a0

+ b1 × a3 a2 a1 a0

+ b2 × a3 a2 a1 a0

+ b3 × a3 a2 a1 a0

p7 p6 p5 p4 p3 p2 p1 p0

The bi multiplications are by 0 or 1. Rows are added using
unsigned addition.
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Two’s complement multiplication (1/4)

This is the same solution shown in the previous lecture:

I sign extension followed by signed multiplication.

b0 × a3 a3 a2 a1 a0

+ b1 × a3 a3 a2 a1 a0

+ b2 × a3 a3 a2 a1 a0

+ b3 × a3 a3 a2 a1 a0

− b3 × a3 a3 a2 a1 a0

p8 p7 p6 p5 p4 p3 p2 p1 p0

Can we convince ourselves that p in two’s complement format is the
correct solution?
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Two’s complement multiplication (2/4)

First, what is the correct answer?

va = −a323 + a222 + a121 + a020

vb = −b323 + b222 + b122 + b020

The coefficients of different order terms can be given in the table below:

vavb 28 27 26 25 24 23 22 21 20

a3b3 −a3b2 −a3b1 −a3b0 a2b0 a1b0 a0b0

−a2b3 a2b2 a2b1 a1b1 a0b1

−a1b3 a1b2 a0b2

−a0b3
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Two’s complement multiplication (3/4)

Let’s now verify that the two’s complement multiplication does give the correct

answer

b0 × a3 a3 a2 a1 a0

+ b1 × a3 a3 a2 a1 a0

+ b2 × a3 a3 a2 a1 a0

+ b3 × a3 a3 a2 a1 a0

− b3 × a3 a3 a2 a1 a0

p8 p7 p6 p5 p4 p3 p2 p1 p0

p 28 27 26 25 24 23 22 21 20

a3b3 −a3b3 −a3b2 −a3b1 −a3b0 a3b0 a2b0 a1b0 a0b0

−a3b3 a3b3 a3b2 a3b1 a2b1 a1b1 a0b1

−a2b3 a2b3 a2b2 a1b2 a0b2

−a1b3 a1b3 a0b3

−a0b3
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Two’s complement multiplication (4/4)

Continue. . .

p 28 27 26 25 24 23 22 21 20

a3b3 −a3b3 −a3b2 −a3b1 −a3b0 a3b0 a2b0 a1b0 a0b0

−a3b3 a3b3 a3b2 a3b1 a2b1 a1b1 a0b1

−a2b3 a2b3 a2b2 a1b2 a0b2

−a1b3 a1b3 a0b3

−a0b3

Simple arithmetic =⇒:

p 28 27 26 25 24 23 22 21 20

a3b3 −a3b2 −a3b1 −a3b0 a2b0 a1b0 a0b0

−a2b3 a2b2 a2b1 a1b1 a0b1

−a1b3 a1b2 a0b2

−a0b3

The same with vavb!
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An equivalent two’s complement multiplication

operation

b0 × a3 a3 a3 a3 a3 a2 a1 a0

+ b1 × a3 a3 a3 a3 a2 a1 a0

+ b2 × a3 a3 a3 a2 a1 a0

− b3 × a3 a3 a2 a1 a0

p7 p6 p5 p4 p3 p2 p1 p0

I Again, first sign extension

I Multiply by bi, either 0 or 1, then two’s complement addition.

I The last row subtraction (done using addition: complement all the
bits and add 1).

I Can use exactly the same method to show correctness.

I This alternative architecture directly leads to the implementation
discussed next.
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Unsigned shift and add multiplier

ëÜáÑí=êÉÖáëíÉê ^ka

êÉÖáëíÉê
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Ä ~
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äëÄÅ~êêó

~ÇÇÉê

äçï=ÄáíëÜáÖÜ=Äáíë
~ Äñ

b0a3 b0a2 b0a1 b0a0
b1a3 b1a2 b1a1 b1a0

b2a3 b2a2 b2a1 b2a0
b3a3 b3a2 b3a1 b3a0

p7 p6 p5 p4 p3 p2 p1 p0
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Signed shift-and-add multiplier

ëÜáÑí=êÉÖáëíÉê ^ka

êÉÖáëíÉê

éJêÉÖáëíÉê ëÜáÑí=êÉÖáëíÉê

Ä ~

äëÄ äëÄ

äëÄ

~ÇÇLëìÄíê~Åí

äçï=ÄáíëÜáÖÜ=Äáíë
~ Äñ

ë

b0 × a3 a3 a3 a3 a3 a2 a1 a0
+ b1 × a3 a3 a3 a3 a2 a1 a0
+ b2 × a3 a3 a3 a2 a1 a0
− b3 × a3 a3 a2 a1 a0

p7 p6 p5 p4 p3 p2 p1 p0
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How do these work

These two circuits typically are included in modern texts on
computer arithmetic as the starting point for much more interesting
logic.

Basically zeros the accumulator. Next adds successive rows shifting
the result right 1 each time to simplify the logic.

Once all of the rows have been added you get the product in the
accumulator and the register that the accumulator had been shifted
into.

For the signed multiply the sign only needs to be extended one
position (at a time). The last row is subtracted to form the final
sum.
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Pipelined bit-serial multiplier

Going from least to most significant bit, generates the sums of the
columns bit at a time. (Lyon:76)

b0a3 b0a2 b0a1 b0a0

b1a3 b1a2 b1a1 b1a0

b2a3 b2a2 b2a1 b2a0

b3a3 b3a2 b3a1 b3a0

p7 p6 p5 p4 p3 p2 p1 p0

A thirty year old classic. Instead of adding up the rows the columns
are generated and summed. Needs about twice as many clock tics
per product as the previous method.
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Unsigned bit serial multiplier
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b0 × a3 a2 a1 a0
+ b1 × a3 a2 a1 a0
+ b2 × a3 a2 a1 a0
+ b3 × a3 a2 a1 a0

p7 p6 p5 p4 p3 p2 p1 p0
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Signed bit serial multiplier
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Modified signed bit serial multiplier
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I was tracing a particular author’s papers in the literature. One
paper he was drawing his logic like in the preceding slide and the
next he had this very clever version.
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Bit-serial multiply-accumulate (MAC)
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Combining the bit-serial multiplier with the bit-serial adder gives a
bit-serial multiply-and-add implementation. (Some control logic needed).

Sequentially adds results of several multiplies: specialized FIR filter
computation yk =

∑M
i=0 bix[k − i]
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Sequential logic: D flip-flop

current state next state

Q D Q+

X 0 0

X 0 0

X 1 1

X 1 1

I A basic storage element and fundamental building block

I Basic D flip-flop: state Q+ locks onto input logic level D on
rising clock edge

I A master-slave D flip-flop: locks onto D on falling edge of the
clock
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Serial-input parallel output (SIPO) register

I Input Data is shifted into the leftmost bit position.

I Shifts the contents of the register to the right, one bit position
on each active transition of the clock.
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Parallel-input parallel output (PIPO) register

4-bit PIPO
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4-bit switch-tail ring counter

4-bit switch-tail ring counter (Johnson counter)
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3 bit asynchronous counter with Toggle FFs

http://www.electronics-tutorials.ws/counter/count_1.html
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Performance considerations (1/5)
I Speed and throughput (MOPS/sec)

I Energy and power consumption (Joules, Watts)

I Area (cm/design, µm/gate)

I Reliability and accuracy

• Moore’s Law (1965): component density doubles every year
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Performance considerations (2/5)

I Energy*delay: measure for comparing efficiency of circuits.

I Power determined by capacitance (C) and logic (supply)
voltage

I Delay determined by RC time constants

Ref: Horowitz, M. and Indermaur, T. and Gonzalez, R., IEEE
Symp on Low Power Electronics, 1994.
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Power consumption and delay (3/5)

I Intrinsic delay of a transition: T = kCVdd

(Vdd−Vth)2
(secs)

I Energy per transition: E = C V 2
dd (Joules)

I Power dissipation if a signal is applied to input:

P = C V 2
dd fclkα (Watts)

I α is ”activity ratio” = average number of input signal
transitions per clock cycle

Ref: Chandrasekeran and Brodersen, Proc IEEE, 1995
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Performance considerations: D flip flop (4/5)

next state current state

Q+ Q D

0 0 0

0 1 0

1 0 1

1 1 1

I State Q+ locks onto input logic level D on negative clock edge

I What is power dissipated by the D flip flop?
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Performance considerations: D flip flop (4/5)

I Signal nodes X,D (Q) transition on clk leading (falling) edge:

Pk =
1

2
Ck V

2
dd fclkαk (Watts)

I Clock node (inverter) transitions on both edges:

Pinvtr = C V 2
dd fclk (Watts)

I Total power P = Pinvtr +
∑3

k=1 Pk. Lumped model
αk = α, Ck = C

PDFF (α) = (1 + α3/2)CV 2
ddfclk

Ref: Strollo, Napoli, Cimino, IEEE Trans on VLSI, Vol. 8, No. 5, Oct 2000.
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Performance considerations: D flip-flop (5/5)

equivalent to

Illustration

I Representative values: Ck = C = 0.1pF, Vdd = 1.8V,
fclk = 200MHz, αk = 1

I Total power (α = 1):

PDFF (α) = (0.1×10−12)(1.8)2(200×106)(1+3/2) = 2×10−4 = 200µW
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Parallel-input parallel output (PIPO) register
4-bit PIPO

I Assume
I DFF’s have identical output capacitance
I Average transitions/clock-cyle is identically α = 1 for all

bit-streams PA, PB, PC, PD.

I Total power dissipation:

PPIPO = 4PDFF (α), α = 1
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4-bit switch-tail ring counter

4-bit switch-tail ring counter (Johnson counter)

I Assume
I DFF’s have identical input/output capacitance

I Total power dissipation is:

PJC = 4PDFF (α), α = 1/4
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3 bit asynchronous counter with Toggle FFs

I Assume
I Toggle FF’s dissipate same amount of power as DFF’s

I Total power dissipation is:

PCounter = PDFF (1/4) + PDFF (1/2) + PDFF (1)

http://www.electronics-tutorials.ws/counter/count_1.html
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Performance considerations

I Power reduction strategies
I Lowering voltage Vdd

I Reducing resolution (bit-width B)
I Lowering clock rate fclk
I Scaling and shortening gate interconnects
I Reducing idle activity level (uneccessary bit transitions).

I Speed improvement usually comes at cost of increased power

I FPGAs are reconfigurable logic arrays that can be used to
explore performance tradeoffs for different designs.

I FPGA translates high level logic and arithmetic descriptions
into silicon implementation.

I Design optimizers (Quartus, Xilinx) can be configured to
minimize power or runtime, subject to clock, path, or port
constraints.
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Summary of what we covered today

I Gate-level arithmetic

I Power dissipation and delay

I Next: Altera DE2 and Verilog programming refresher
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