Lecture 8

Today: FIR filter design
IIR filter design
Filter roundoff and overflow sensitivity

Announcements: Team proposals are due tomorrow at 6PM
Homework 4 is due next thur.
Proposal presentations are next mon in 1311EECS.

References: See last slide.

Please keep the lab clean and organized.

Last one out should close the lab door!!!!

We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. — D. Knuth
Proposal presentations: Mon Sept 29

Schedule

▶ Presentations will occur from 6PM to 10:00PM in EECS 1311.
▶ Your team spokesperson must sign the team up for a 30 minute slot (20 min presentation).
▶ All team members must take part in their team’s presentation.
▶ You may stay for any or all other portions of the presentation meeting.
▶ Team should arrive at least 20 minutes before their time slot.
▶ Team must use powerpoint or other projectable media for your presentations.
▶ The presentation must cover each section of the proposal.
▶ You should put your presentation on a thumb drive and/or email copy to hero before the meeting.
We have seen the need for several types of analog filters in A/D and D/A:
- Anti-aliasing filter
- Reconstruction (anti-image) filter
- Equalization filter

Anti-aliasing and reconstruction require cts time filters

Discrete time filters are used for spectral shaping post-digitization.

There will be round-off error effects due to finite precision.
Different types of filter transfer functions

- **Lowpass**

 - Frequency response $|H(f)|$
 - Pass frequencies below a certain threshold, block frequencies above.

- **Highpass**

 - Frequency response $|H(f)|$
 - Pass frequencies above a certain threshold, block frequencies below.

- **Bandpass**

 - Frequency response $|H(f)|$
 - Pass frequencies within a band, block frequencies outside the band.

- **Band reject (notch)**

 - Frequency response $|H(f)|$
 - Block frequencies within a band, pass frequencies outside the band.
Matlab’s fdatool for digital filter design

Figure: Lowpass, highpass, bandpass, bandstop (notch) in Matlab’s fdatool
FIR vs IIR Digital filters

Output depends on current and previous M input samples.

$$y[n] = b_0 x[n] + b_1 x[n - 1] + b_2 x[n - 2] + \cdots + b_M x[n - M].$$

This is a FIR moving sum filter.

Output depends on current input and previous N filter outputs.

$$y[n] = x[n] - a_1 y[n - 1] - a_2 y[n - 2] - \cdots - a_N y[n - N].$$

This is an IIR all-pole or autoregressive filter.

Output depends on current and previous M input samples and the previous N filter outputs.

$$y[n] = b_0 x[n] + b_1 x[n - 1] + b_2 x[n - 2] + \cdots + b_M x[n - M] - a_1 y[n - 1] - a_2 y[n - 2] - \cdots - a_N y[n - N].$$

This is the general pole-zero IIR digital filter equation.
Filter design procedure

- Specification of filter requirements.
- Selection of FIR or IIR response.
- Calculation and optimization of filter coefficients.
- Realization of the filter by suitable structure.
- Analysis of finite word length effects on performance.
- Implementation.
- Testing/validation.

The above steps are generally not independent of each other. Filter design is usually an iterative process. The FIR–IIR response selection step is a major design choice.
FIR block diagram (again)

\[Y = (b_0 + b_1 z^{-1} + b_2 z^{-2} + \cdots + b_M z^{-M})X \]
\[= b_0 X + b_1 (z^{-1} X) + b_2 (z^{-2} X) + \cdots + b_M (z^{-M} X) \]

\[\frac{Y}{X} = b_0 + b_1 z^{-1} + b_2 z^{-2} + \cdots + b_M z^{-M} \]

This is sometimes referred to as the direct form (DF).

This implements well in a DSP with one or two MAC units. Can do all the MACs accumulating into a bit-rich accumulator. Once all the sums are formed truncate/round then saturate and finally use/store the result.

Well suited to a pipelined implementation
Transposed FIR block diagram

\[
Y = (b_0 + b_1 z^{-1} + b_2 z^{-2} + \cdots + b_M z^{-M})X \\
= b_0 X + (b_1 X)z^{-1} + (b_2 X)z^{-2} + \cdots + (b_M X)z^{-M}
\]

\[
\frac{Y}{X} = b_0 + b_1 z^{-1} + b_2 z^{-2} + \cdots + b_M z^{-M}
\]

This is sometimes referred to as the transposed direct form (TDF) or the broadcast form.

Well suited for cascade implementation.
Figure 2: FIR Filter Structure Employing Tree of Pipelined Adders
Figure 3: Transposed Form FIR Filters Employing Cascaded Pipelined Adders
Run time complexity?

Q. How many MULT and ADD operations are needed to calculate

\[y[n] = b_0 x[n] + b_1 x[n - 1] + \cdots + b_{N-1} x[n - N] \]?

A. Could be as high as \(N \) ADDs and \(N + 1 \) MULTs. However simplifications can occur

- May be able to group certain operations to reduce computations.
- Some coefficients may be equal, e.g., \(b_0 = b_1 = \ldots = b_N \)

\[y[n] = b_0(x[n] + x[n - 1] + \ldots + x[n - N]) \]

Only a single MULT required.

- Values of coefficients or data may be integer powers of two, e.g. \(b_n = 2^{q_n} \). In this case MULTs can be performed by register shifts.
The running average filter

Running average filter \((b_0 = b_1 = b_2 = \cdots = b_N = 1/(N + 1))\) has transfer function

\[
H(z) = \frac{1 + z^{-1} + \cdots + z^{-N}}{N + 1}.
\]

This is the sum of a geometric series so has closed form

\[
H(z) = \frac{1 - z^{-(N+1)}}{1 - z^{-1}} \frac{1}{N + 1}
\]

Expressing this in (digital) frequency domain \((z = e^{j2\pi f})\) gives

\[
H(f) = \frac{1 - e^{-j2\pi(N+1)f}}{1 - e^{-j2\pi f}} \frac{1}{N + 1} = e^{-j\pi N f} \frac{\sin[\pi(N + 1)f]}{\sin(\pi f)} \frac{1}{N + 1}.
\]

Because of the periodicity of \(e^{j2\pi f}\) we need only focus on range \(-1/2 \leq f < 1/2\).

Note that \(H(f)\) has **linear phase**
Running average filter magnitude

Number of FIR filter coefficients:

\[P = N + 1. \]

Distance to first zero: \(1/P \).
Nominal bandwidth: \(1/P \).
First side peak at: \(3/(2P) \).
First lobe level:

<table>
<thead>
<tr>
<th>(P)</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-11.4</td>
</tr>
<tr>
<td>8</td>
<td>-13.0</td>
</tr>
<tr>
<td>16</td>
<td>-13.3</td>
</tr>
<tr>
<td>(\infty)</td>
<td>-13.5</td>
</tr>
</tbody>
</table>
Recall our equiripple design example (Lecture 2):

- Low pass filter.
- $f_s = 48000$ Hz.
- Bandpass ripple: ± 0.1 dB.
- Transition region 3000 Hz to 4000 Hz.
- Minimum stop band attenuation: 80 dB.
fdatool’s solution
fdatool’s magnitude, phase and group delay

Magnitude Response (dB)

Phase Response

Group Delay

Frequency (kHz)
The filter impulse response has a delayed "peak"
Delay of peak is approximately 1.7 msecs
Delay corresponds to 80 integer units (1/2 of total length of filter). Note that the impulse response is symmetric about the peak
Objective: design FIR filter whose magnitude response $|H(f)|$ meets constraints.
Can design filter to have linear phase over passband.

There are four FIR linear-phase types depending upon

- whether the number of coefficients is even or odd,
- whether the coefficients are even or odd symmetric.
Linear phase and FIR symmetry

Given M-th order FIR filter $h[n]$. Assume that $h[n]$ has even or odd symmetry about an integer m:

Even symmetry condition: There exists an integer m such that $h[m - n] = h[n]$.

Odd symmetry condition: There exists an integer m such that $h[m - n] = -h[n]$.

Then $h[n]$ is a linear phase FIR filter with transfer function.

$$H(f) = |H_m(f)|e^{-j2\pi fm + j\phi}$$

where $H_m(f)$ is the transfer function associated with $h_m[n] = h[n + m]$ and $\phi = 0$ if even symmetric while $\phi = \pi/2$ if odd symmetric.

Why? Because, $H_m(f)$ is the DTFT of a sequence $\{h_m[n]\}_n$ that is symmetric about $n = 0$.

Note: **Symmetry condition** cannot hold for (causal) IIR filters.
IIR filters

\[H(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}}{1 + a_1 z^{-1} + \cdots + a_N z^{-N}} \]

\[= \left(b_0 + b_1 z^{-1} + \cdots + b_M z^{-M} \right) \times \frac{1}{1 + a_1 z^{-1} + \cdots + a_N z^{-N}} \]

\[= \frac{1}{1 + a_1 z^{-1} + \cdots + a_N z^{-N}} \times \left(b_0 + b_1 z^{-1} + \cdots + b_M z^{-M} \right) \]

Without loss of (much) generality we will set \(M = N \).
Comments on IIR

Most authors use b_i’s as the numerator coefficients and a_i’s as the denominator coefficients.

Writing the transfer function numerator first suggests implementing the zeros (the FIR part) first followed by the poles. Such a implementation is called *direct form 1*.

Writing the transfer function denominator first suggests implementing the poles (the IIR or feedback part) first followed by zeros. Such an implementation is called *direct form 2*.
Direct forms 1 and 2

Direct Form 1 (DF1)

\[H(z) = B(z) \times \frac{1}{A(z)} \]

Direct Form 2 (DF2)

\[H_2(z) = \frac{1}{A(z)} \times B(z) \]
Canonical direct form 2

(a) Non-canonical Direct Form 2.

(b) DF2 in canonical form.
Have assumed $N = M$. If $M > N$ then append a FIR filter of the necessary size. If $M < N$ then set the appropriate b values equal to zero.

The canonical form is canonical in the sense that it uses the minimum number of delay stages.

We will often simply assume that direct form 2 filters are in canonical form.
Stability and minimum phase

- The transfer function (TF) is stable if the zeros (the transfer function poles) of
 \[1 + a_1 z^{-1} + \cdots + a_N z^{-N} \]
 lie within the unit circle in the \(z \)-plane.

- The locations of the zeros of
 \[b_0 + b_1 z^{-1} + \cdots + b_M z^{-M} \]
 do not affect the stability of the TF. The zeros can lie anywhere on the \(z \)-plane.

- A TF that has all of its numerator zeros inside of the unit circle is said to have minimum phase.

- Minimum phase TFs are useful when designing inverse filters, e.g. FM pre-emphasis and de-emphasis.
IIR in Z-domain and time domain

Fig. 6.14 from Lyons, "Understanding DSP"
IIR vs FIR. Which is better?

All pole IIR lowpass filter (requires 5 multiply-adds):

\[y[n] = 1.194y[n-1] - 0.436y[n-2] + 0.0605x[n] + 0.121x[n-1] + 0.0605x[n-2] \]

Fig. 6.14 from Lyons, "Understanding DSP"
IIR vs FIR. Which is better?

Use fdatool:
5th order IIR lowpass filter (requires 10 multiply-adds):
10 tap FIR lowpass filter (requires 10 multiply-adds)

Left: FIR equiripple 10 tap. Right: IIR elliptical 5th order.
Both filters have passband cutoff freq $f_s/10 = 4800$ and unity average magnitude response over passband.

Both filters have the same number of multiply-adds.

IIR has flatter passband, steeper rolloff, and lower sidelobes.

Q. So why not always use IIR designs?

A. IIR have disadvantages

(causal) IIR filters have non-linear phase response.

IIR filters can be very sensitive to coefficient quantization.

IIR filters can suffer from severe arithmetic overflow at internal nodes.
Summary of what we covered today

- FIR filter forms (Direct Form and Transposed Direct Form) and linear phase
- IIR filters forms (Direct Form 1, Direct Form 2 and Canonical forms)
- IIR vs FIR filter designs
References

