EECS 452 — Lecture 9

Today: Finite precision FIR/IIR filter design
Overflow and roundoff errors
Announcements:
Hw4 due on thursday.
Oct 9 (Thu) lecture added to schedule:
Real time embedded DSP
Oct 10 (Fri): deadline for parts orders

References: Please see last slide.

Last one out should close the lab door!!!!

Please keep the lab clean and organized.

You see things; and you say, ”Why?” But I dream things that never were; and I
say, " Why not?”
George Barnard Shaw
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Effect of IIR coefficient quantization

Pole/Zero Plot

it . O Bandpass Elliptic: Zero
o8l X Bandpass Eliptic: Pole
06 g
04 X
8 02
>
g 0 6} 9}
g 02
E
-0.4 x
-0.6
08
b
15 1 05 0 05 1 15

Real Part

H(Z) . bo + blzil + b2Z72
T agt+aizl 4 asz—?

» If quantize denominator coefficients poles might move closer to the
unit circle.

» This can cause the filter to become unstable or quasi-stable.

» Unstable: quantized pole outside of unit circle.
» Quasi-stable: quantized pole on the unit circle.
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IR coefficient quantization and limit cycles
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» Adder rounds its output to nearest integer.

» Eternal oscillation occurs when y(—2) =0, y(—1) = 8 and
z[0) =z[1] =---0.
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Roundoff/overflow: FIR Direct and

Transpose Forms
Y = Y =

boX +b1(z7 X))+ ..+ by (27 MX) (b X)+ (01 X))z 4+ (b X )M
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Controlling roundoff/overflow in FIR filters
y[n] = boz[n] + biz[n — 1] 4+ - -+ 4+ byz[n — M]
» Roundoff errors and overflows may occur as the result of any
multiply, add and accumulate (MAC) operations.

» To minimize effect of roundoff error use 16 bit Q15 binary and
choose a design that minimizes dynamic range of coefficients.

» To limit overflow we will do the following;:

> Scale the input values z[n] so that |z[n]| < 1. Given N input
samples z[0], z[1],...,z[N —1]:

] (R,

n=0,...,N—1

» Scale the FIR coefficients bo, ..., b so that |bx| < 1 and
ly[n]| < 1. Assume FIR coefficients determined by fdatool
b; .
bi%Mi, 1207...,M
Zk:() |bk |

» This will ensure no overflow in FIR filter MACs.
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Roundoff/overflow: IIR Direct forms 1 and 2

Direct Form 1 (DF1) Direct Form 2 (DF2)

H(z) = ﬁ x B(z)
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IIR Canonical direct form 2

a) Non-canonical Direct Form 2. b) DF2 in canonical form.

EECS 452 - Fall 2014 Lecture 9 — Page 7/55 Tue — 9/30/2014



Overflow sensitivity of IIR filters.

Controlling roundoff and overflow in IIR filters is more complicated
than in FIR

Some IIR design approaches are more sensitive than others.

There are many ways to design IIR filters:

» Butterworth — maximally flat
» Chebyshev
» Type 1: equiripple in the passband, monotone in the stopband.

» Type 2: monotone in the pass band, equiripple in the stopband.
» elliptic — equiripple in the passband and in the stopband.
Optimal in the sense that for a given order it passes through
the smallest possible transition band.
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Properties of these filters

Butter

Butterworth. Maximally flat in the
pass band. Monotonic roll off in the
stop band.

3000 4000 5000 6000 7000 8000
frequency (Hz)
Chebyl

Chebyshev type 1. Equiripple in the
pass band. Monotonic roll off in the
stop band.

3000 4000 5000 6000 7000 8000
frequency (Hz)
Cheby2

Chebyshev type 2. Monotonic in the
pass band. Equiripple in the stop
ANV band.

0 1000 2000 3000 4000 5000 6000 7000 8000
frequency (Hz)
Elliptic

Elliptic. Equiripple both in the pass
and stop bands. Optimal transition
between pass and stop bands.

3000 4000 5000 6000 7000 8000
frequency (Hz)
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Pole and Zero Locations

Butterworth:
Chebyshev 1:
Chebyshev 2:

Elliptic:
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Butterworth filter coefficient

Butter

Numerator coefficients (53)

OO O0OO0OO0OO0OO0OOoOOoOOo

.0000000000
.0000000000
.0000000016
.0000004479
.0000125939
.0000477340
.0000270414
.0000021936
.0000000206
.0000000000

0.0000000000
Denominator coefficients (53)

1

-1

.000000
-7059.
268398.
-809294.
360206.
-29655.
474.
.358702
0.
-0.
0.

412172
869177
988642
142051
011284
376094

000548
000000
000000
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0.

1
-39
79
-24
1

.0000000000
.0000000000
.0000000060
.0000010359
.0000191907
.0000495699
.0000191907
.0000010359
.0000000060
.0000000000
0000000000

-14.485235
9007.953411
8070.141447
3688.087323
9310.489583
4796.263025
-169.610425

0.336753
-0.000087
0.000000
-0.000000

.0000000000
.0000000000
.0000000206
.0000021936
.0000270414
.0000477340
.0000125939
.0000004479
.0000000016
0000000000
0000000000

OO O0OO0OO0OO0OO0OOOOoOOo

108.892629
-44181.160327
538774.788242

-723548.120952
161505.343889
-6915.328167
56.564993
-0.077009
0.000013
-0.000000
0.000000

values
0.0000000000 0.0000000000
0.0000000001 0.0000000004
0.0000000635 0.0000001768
0.0000042653 0.0000076327
0.0000352714 0.0000426196
0.0000426196 0.0000352714
0.0000076327 0.0000042653
0.0000001768 0.0000000635
0.0000000004 0.0000000001
0.0000000000 0.0000000000
-560.590282 2207.916845
90234.032916 -164088.539461
-668949.194632 765208.835443
614376.363748 -486708.393544
-97980.476106 55687 .060582
3026.163865 -1239.130105
-17.568725 5.072718
0.016194 -0.003119
-0.000002 0.000000
0.000000 -0.000000
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Chebyshev 1 and 2 filter coefficient values

Cheby1

Numerator coefficients (17)
0.0000000085  0.0000001356  0.0000010173  0.0000047474  0.0000154290
0.0000370296  0.0000678875  0.0000969822  0.0001091049  0.0000969822
0.0000678875  0.0000370296  0.0000154290 0.0000047474  0.0000010173
0.0000001356  0.0000000085

Denominator coefficients

1.000000 -9.817865 48.302917  -156.772970 373.680906
-691.001892  1022.672308 -1233.283016  1223.105455 -1000.026974
671.545993  -366.484942 159.400953 -53.461355 13.056916
-2.078911 0.163038
Cheby2

Numerator coefficients (17)
0.0094956544  0.0261944594  0.0770790872 0.1525062902  0.2717122008
0.4072371571 0.5434552757  0.6418315575 0.6787499757  0.6418315575
0.5434552757  0.4072371571 0.2717122008  0.1525062902  0.0770790872
0.0261944594  0.0094956544

Denominator coefficients

1.000000 -1.777756 4.322853 -4.364343 5.779933
-3.561359 3.418699 -1.144368 1.056520 -0.077544
0.205087 0.036841 0.030444 0.009021 0.003002
0.000653 0.000090
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Elliptic filter coefficient values

Elliptic
Numerator coefficients (9)
0.0090414378 0.0058832667 0.0246209031 0.0195809558 0.0316918245
0.0195809558 0.0246209031 0.0058832667 0.0090414378
Denominator coefficients (9)
1.000000 -3.841248 8.219775 -11.387778 11.100736
-7.650511 3.645340 -1.096464 0.161832
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Overflow IIR filter comparisons

The Butterworth realization has the most coefficients and they have
large dynamic range. This isn’t going to implement well on a 16-bit
processor or even on a 32 bit processor.

The Chebyshev coefficients probably are less a problem but the
range in values is still large.

The Elliptic filter has the fewest coefficient values.

All of the filter realizations have some coefficient values significantly
larger than 1. Some sort of scaling procedure must be implemented.
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Overflow and saturation in IIR filters

» Adder and MAC overflows cause very significant 1/O distortion and
€rTors.

» Must protect against overflows at all IIR signal nodes: internal
overflows.

» Two ways to correct for overflow:

» Scaling the input down to an acceptable level.
» Reorganizing IIR filter operations to minimize overflow at
every node.

» Design approaches

» Scaling: need find the right scale factor for no overflow.
» Reorganizing filter realization: use most robust
implementations of transfer function (DF 1 vs DF 2).

» You will explore these approaches in Lab 5.
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Scaling the input samples to avoid overflow
Consider a sequence of input values {z[n]} such that —1 < z[n] < 1

for all n. The input values are to be divided by a scale factor S.
Three values commonly used for S are:

S=3"|n[n]] = |k]ls = L1 norm of h
n=0

o 1/2
S = <Z h2[n]> = ||h|l]2 = Lz norm of h

n=0

S = max|H(f)| — | lo0 = Loo norm of H

h = {h[n]} is the filter impulse response

H(f) = H.(e7?"f) is transfer function over (digital) frequency
felo,1].
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Which norm to use?

» The output of filter is y[k] = >, h[n|z[k — n].
> If ||ly|loo = maxy |y[k]| < 1 there will be no overflow.

1. Normalization of z[n] by ||h||1 guarantees there will be no
overflow.?

2. Normalization by ||h||2 does not give overflow guarantees.?

3. Normalization by ||H || guarantees that no sinewave input will
cause overflow. However, other types of inputs may still cause
overflow.

Nonetheless, due to its relative simplicity, we will only consider
| H||oo normalization here.

The well known modulus bound of functional analysis implies
32, hlnlalk — n]| < 32, |An]| |2[k - n|

bNormalization by v/M]||h||2 does provide guarantees for M-th order FIR filters due
to another result of functional analysis: ||k||2 < ||h|l1 < VM]h]|2.
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Implementing TFs in factored form

Unfactored transfer functions, in a sense, implement the poles and
zeros all at once. A small quantization error in a coefficient value
can affect all aspects of the filter.

Implementing the poles and zeros individually may result in a more
robust implementation.

As we are only considering filters having real valued coefficients,
any complex valued poles or zeros must appear in conjugate pairs.

This leads to idea of factoring transfer functions into the ratio of
the product of quadratic factors.
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Using biquad sections to implement a TF

To keep things simple we will assume that H(z) has an equal even
number of poles and zeros. An IIR transfer function can be written
in factored form as

N/2—1
H bs,O + bs,lz_l + bs,ZZ_2
s=0
H(Z) - N/2—-1
H 1+ anlz_l + ar722_2
r=0

A biquadratic filter section can be used to implement a set of zeros
and a set of poles.

H(z) Nﬁl bro + b1zt + b2 ?
Z) =
1+ar127t + ap 0272

r=0
Design principle: pair up zeros and poles and order the resulting
biquad sections to obtain the best performance.
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The DF1 and TDF1 biquad sections

® ®
w, Wy
V2a-g,| b, [Va

(a) Direct form type 1 biquad section. (b) Transposed direct form 1
biquad section. These are not canonical.

_ bo + b1271 + b2272

1 + alz_l + agz_2

H(z)
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The DF2 and TDF2 biquad sections

(b)

(a) Direct form type 2 biquad section. (b) Transposed direct form 2

biquad section.
- bo + b1271 + b22’72

H(z) =
( ) 1+a12_1+a22_2

The most commonly used biquad is direct form 2. We need to

analyze the transfer function magnitudes between input and
internal states in addition to between input and output.
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TDF2 and DF2 biquad overflow concerns

x>t wa yi—>t bzo@ .

possible
overflow

possible
overflow —

bit loss

The filters to be designed for use in the lab will nominally have
input to output passband gain of 1. This sets the overall transfer
function gain level. Of concern is whether or not this level will give
rise to overflows internal to the filter.

In order to check for this possibility in the above (TDF2) block
diagram we are interested in the transfer functions from the input x
to the values y;, w;1 and w;o for each section i. These are the
locations at which overflows can occur.
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Input-to-delay stage transfer functions: DF2

Input-to-v; transfer function (in z-domain) is easily determined
i=X- alzilvl — a22*2V1 .

The transfer function between X and Vi is

Vi 1
X l4azl4az2"

The transfer function between X and W is then
Wy . 271
X  14a1z7 '+ agz2

and between X and Wy

Wy 272

X 1 + a1z +agz72"
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Input-to-delay stage transfer functions: DF2

The section input-to-delay stage transfer functions:

=

_ i) (2)

Hx w, (2) = X0 Hx sw,(z) = X(2) Hx v (2) =

>
=

N
X

These are related by:

W. 1% V]
Wo _ W 0

X X X

The magnitudes are the same on the unit circle z = e/27/:

W ; Vi
b atasd

W
— |e—d2mf | 2L
e | ‘ X

since |[e727f| = |e7747f| = 1.
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DF2 biquad cascade

The above block diagram shows a cascade of four DF2 second order
biquad sections. This can be used to implement an eighth order
lowpass filter.
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The DF2 and TDF2 biquad sections (again)

(b)

(a) Direct form type 2 biquad section. (b) Transposed direct form 2

biquad section.
. bo + b1271 + b22’72

H(z) =
(2) 1+a12_1+a22_2

The most commonly used biquad is direct form 2. We need to

analyze the transfer function magnitudes between input and
internal states in addition to between input and output.
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Input-to-delay stage transfer functions: TDF2

For the TDF2 section the z-transformed equations are

Y = boX+ 21V,
Vi = WX —aY + 271,
‘/2 = bQX — CLQY.
Substituting the equation for Y into the equations for V; and Vs
gives
Vi = WX —aboX —arz Vi + 271,
Vo = byX —agboX — azz” V.
1+az7t —z7t Vi | | (b1—aibo) b%
asz™ ! 1 Vo | (by — azbo) .
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Solving for the TDF2 biquad TFs

The two-by-two matrix is easily inverted giving transfer functions,

in non-matrix form,

E b1 — a1b0 + (b2 e U,Qbo)zil
X b

1+a1271 +agz2

E b2 — a2b0 + (albg - agbl)Zil
X .

1+a1z71 +agz—2
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TDF2 biquad cascade

y—>t y->1 y->t

The above block diagram shows a cascade of four TDF2 second
order biquad sections. This can be used to implement an eighth
order lowpass filter.
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Multistage analysis of overflow proclivity

We can now illustrate the analysis of overflow of DF2 and TDF2.
Given: a quad factorization of the IIR filter

Given: the input-to-stage transfer functions H found above

vV v vy

The procedure is to evaluate maxy |[H(f)| = || H || for each stage
and scale the input by the maximum over all the stages.

» This will result in:

» Guarantee of no-overflow for sinusoidal inputs.
» For other inputs will need to experimentally validate.

» Note: the following matter a lot

» The matching of pole pairs and zero pairs for each biquad
section.
» The cascade order of the biquad sections.

» Pairing and cascade ordering are non trivial

» M! possible ways of permuting the cascade order.
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DF2 biquad cascade transfer functions

Write H; = }(/ , Hiyp = V)[?l and H;s = WT Because of our choice

of the Lo, norm we are interested in the magmtudes of the input to
delay stage filter functions:

section 1  Hi; Hy

section 2 HiHo; H{H,
section 3 H{H.H3q H H>H;
section 4 H{H-HsH,y H{H-H3zH,
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DF2 section delay output magnitudes are equal

Within a section the magnitudes of the section input to the delay
stage outputs are equal.

If we evaluate the transfer function magnitude for one delay stage
we have the same result for the other delay stage output.

We don’t have to determine the input to delay stage output transfer
functions for both delay stages in a DF2 biquad. A work savings.
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TDF2 biquad cascade transfer functions

x>t blo@

Write H; = %, H;; = V)[? and H;s = % Because of our choice
1 3 K3

of the Lo, norm we are interested in the magnitudes of the input to

delay stage filter functions:

section 1 Hy; Hyo H,

section 2 Hi1Ho Hi1Hyo H.Hy
section 3 Hi{HsH3 H{H>Hss H H>Hj
section 4 H{H.H3H4sy H{HsH3H,», H{HyHsH,
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Overflow resistant IIR filter implementation
Goal: implement ITR LPF filter? to meet given specifications.

Procedure: Use MATLAB for design and T1T supplied IIR filter
functions (DSPlib) for implementation.

What could possibly go wrong?

» TT supplied functions are mostly DF2. The DF2 has internal
resonance peaks leading to gain exceeding one and resulting in
overflow for Q15 inputs and outputs.

» MATLAB design may give coefficient values that exceed one,
leading to Q15 overflow.

First we deal with gain-induced overflow of internal states:
» Distributing the gain over biquad sections.

» Scaling the input z[n] to avoid internal overflow.

?While we will not discuss it here, overflow resistant implementation of other types
of IIR filters (BPF, BSF, etc) is similar.

EECS 452 - Fall 2014 Lecture 9 — Page 34/55 Tue — 9/30/2014



Controlling gain-induced overflow

1.

Design IIR LPF filter using MATLAB and obtain poles and zeros of
TF H.(z).

Construct biquad factorization: H.(z) = Hz“)(z) e H;M)(z)

2.1 List the poles of H, in order of decreasing distance to unit
circle (pole closest to unit circle is at bottom of list).

2.2 For last pole on list match it with the zero closest to it.

2.3 Group this matched pair with the conjugate pair (h[k] is real
valued).

2.4 Progress up the list and construct successive biquad sections.

Scale numerator coefficients: force each biquad to have unit gain at
DC (% = 1). (Note: This does not guarantee internal gains
less than one).

Compute input-to-delay stage TF H,_,;(f) for all internal states i.
Scale input z[n] by replacing by z[n]/S where
S = max; maxy |Hz—i(f)]-

Can we use Q15 for numerator and denominator coefficients of
biquads?. (Below)
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Pole - zero pairing example

Imaginary Part
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X
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Pole - zero pairing example

Elliptic

1 ) O o

)

K@

Imaginary Part
o

1 0 i
Real Part
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Example of individual biquad TFs

elliptic individual section 1

-

The four plots show the
transfer functions of the L T

biquad sections for an eighth 10002000 3000 vency (Hay 000 7000 8000
Order elhpt]c lowpass ﬁlter elliptic individual section 2
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o
@

o

o

=

o
P S e N
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2
H2 (f) E,l max: 2.109 N
Hs(f) sl N
H4 (f) 0 1000 2000 30(;?8qu2?]%3 (HE;)UU 6000 7000 8000
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The sections are ordered lowest g4 ]
@ to highest Q. g2 max 4611
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o
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Example of moving through a cascade

elliptic partial cascade section 1

[

The four plots show the

development of the transfer L T

function of an eighth order 10002000 3060 venay (Hyy 000 7000 8000
H]ptl(} 10 pass ﬁlter as one elliptic partial cascade section 2

e A4

moves between sections going

max: 1.000 9

magnitude
o
@

2

[

magnitude
o
@
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from input to output. e
OO 1000 2000 3000 4000 5000 6000 7000 8000
frequency (Hz)
. elliptic partial cascade section 3
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505 max: 1.001 4
£
Hy ( f ) % 1000 2000 3000 4000 Hsdoo 5000 7000 8000
H1 (f)H2 (f) elliptic pz;?ig?igzzgd;)seclmn 4
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Example of moving through a cascade (dB)

The four plots show the develop-
ment of the transfer function of
an eighth order elliptic lowpass
filter as one moves between sec-
tions going from input to output.

Going from the top down we have

EECS 452 — Fall 2014

elliptic partial cascade section 1

magnitude (dB)

2000 3000 4000 5000 6000
frequency (Hz)
elliptic partial cascade section 2

magnitude (dB)

2000 3000 4000 5000 6000 7000

magnitude (dB)

magnitude (dB)
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Expanded Passband — Moving Through Cascade (dB)

The four plots show the develop-
ment of the transfer function of
an eighth order elliptic low pass
filter as one moves between sec-
tions going from input to output.

Going from the top down we have
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Biquad input-to-delay stage TFs: DF2

elliptic DF2 internal section 1

[N

max: 3.976

[H11(f)]

magnitude
)
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Filter input-to-delay stage TFs: DF2

elliptic DF2 internal partial cascade section 1
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Filter input-to-delay stage TFs: DF2 - max gain

elliptic TF2 max of internal TF magnitudes
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By nominally scaling the input by 4 we can avoid overflow in this
realization. If a 12-bit converter is being used and a 16-bit word size, this
is no great loss.

NB: this transfer function isn’t the one used in lab.
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Biquad input-to-delay
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Biquad input-to-delay stage TFs: TDF2 (ctd)
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Filter input-to-delay stage TFs: TDF2

elliptic TDF2 internal cascaded section 1/1

[

max: 0.929

[H11(f)]

magnitude
o
@

0 . . . . h n :
0 1000 2000 3000 4000 5000 6000 7000 8000
frequency (Hz)
elliptic TDF2 internal cascaded section 1/2

[

[Hi2(f)

.51 max: 0.286

— ]

0 1000 2000 3000 4000 5000 6000 7000 8000
frequency (Hz)
elliptic TDF2 internal cascaded section 2/1

magnitude
o
@

o

[

[H1 () Ha1(f)]

max: 0.722

magnitude
o
@

o

1000 2000 3000 4000 5000 6000 7000 8000
frequency (Hz)
elliptic TDF2 internal cascaded section 2/2

[S)

[

[H1(f)H22(f)]

max: 0.340

magnitude
o
@

0 . . h . .
0 1000 2000 3000 4000 5000 6000 7000 8000
frequency (Hz)

EECS 452 - Fall 2014 Lecture 9 — Page 47/55 Tue — 9/30/2014



Filter input-to-delay stage TFs: TDF2 (ctd)

elliptic TDF2 internal cascaded section 3/1
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Filter input-to-delay stage TFs: TDF2 - max gain

elliptic TDF2 max of internal TF magnitudes
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Implementing a biquad cascade

The implementation steps are:

» Factor the transfer function into pole and zero pairs.
» Choose a biquad architecture.

» Relate the biquad coefficients to the chosen architecture
coefficients.

» Order the poles and the zeros to control internal resonance
levels.

» Distribute the gain between the biquad sections.
» Program and get to work.
> Test.
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Overflow issues for biquad coefficients
Consider the biquad

bo+ bz 4 bez? boz® 4 b1z + by
T l4azl4asz? 224aiztas

The poles of H(z) are determined by 22 4+ a1z + as. Assume a
complex valued pole pair, p; = re?? and py = re=7%.

(z—p1)(z—p2) = 22— 2r cos(0)z +r2=224%a12+ as.

In order for the filter to be (conditionally) stable the biquad poles
have to be (on or) within the unit circle.

Because 0 <r <1 we have that 0 < as <1 and -2 < a; <2.
In addition, ay > a?/4.
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Overflow issues for biquad coefficients

We will be using Q15 numeric format values in the C5515 and
DE2-70. The magnitude of the a; value can be greater than 1 (but
less than 2). We need to worry about this.

There also may be scaling concerns with the b coeflicient values as
well. One needs to stay alert.

The b values have generally been well behaved. Occasionally there
are by values with magnitude greater than 1. Large b values can be
handled by scaling all of the b coefficients. This affects only the
gain through the system.

Scaling cannot be applied to the a values without changing the
shape of the transfer function. (Recall ag = 1 requirement).
Alternatives:

1. Implement each multiply a;z[n] as ((a;/2)z[n])2.
2. Use Q(14) representation.
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Coefficient scaling possibilities

If we divide the a’s by k we need to multiply the sum
by k.

Use Q14 data and Q14 coefficients?

Q14xQ14 gives Q28. To make Q28 into Q14 shift left
2 then truncate. To make Q29 into Q14 need to left
shift 1 then truncate.

Use Q15 data and Q14 coefficients?

Q15xQ14 gives Q29. To make Q29 into Q15 shift left
2 and truncate.

Use Q15 data and Q15 coefficients?

Q15xQ15 gives Q30.To make Q30 into Q15 shift left
1 and truncate.

Need to remember to round before truncating.
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Summary of what we covered today

» Roundoff and overflow for FIR filters
» Roundoff and overflow for IIR filters
> Finite precision IIR FIR filter design strategies
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