
Lecture 11
Today: Spectrum analysis, windowing

STFT, DFT filterbanks
Transfer function measurement
Interrupt processing

Announcements: Parts must be ordered by friday.
There is a lecture on thursday.
No lecture next tuesday (Fall break).
Tue lab shifted to Thur next week.
Oct 16 practice midterm will be posted.
Oct 16 Hwk 5 is due.

References: See last slide.

“Of course the first novel idea was to do the factorization, which you do on pencil
and paper, put together a program. To get an efficient program you have to have

some way of indexing.”
— Jim Cooley talking about how he and Tukey discovered the FFT

Please keep the lab clean and organized. Last one out should close

door!!!!
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Using DFT/FFT for signal analysis

X[k] =

N−1∑
n=0

x[n]e−j2πkn/N , k = 0, 1, . . . , N − 1 .

I The k-th coefficient of the N-point FFT of x[n] is a sample of
the DTFT of x[n] at digital frequency f = k/N .

I If x[n] are time samples x(nTs) of a continuous time signal x(t)
then DTFT is an approximation to the finite time FT of x(t)
over the time window t ∈ [0, (N − 1)Ts).

I There are several issues that need to be addressed
I Spectral leakage
I Spectral resolution
I Time varying spectra

I To build intuition we start by considering an example: DFT of
sinusoidal signal.
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DFT: sinusoid at on-DFT frequency fc = m/N

DFT of sinusoid x[n] = cos(2πfcn+ φ)?

Assume sinusoidal frequency satisfies fc = m/N for integer
m ∈ {0, . . . , N/2} (on-DFT sinusoid)

Use Euler formula: cos(θ) = (ejθ + e−jθ)/2

XDFT (k) =
ejφ

2

N−1∑
n=0

e−j2π
k−m
N

n

︸ ︷︷ ︸
N∆[k−m]

+
e−jφ

2

N−1∑
n=0

e−j2π
k+m
N

n

︸ ︷︷ ︸
N∆[N−k−m]

=

{
Nejφ

2
, k = m

Ne−jφ

2
, k = N −m

(∆[n] is kronecker delta function)
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DFT: sinusoid at off-DFT frequency fc 6= m/N

DFT of sinusoid x[n] = cos(2πfcn+ φ)?

Assume sinusoidal frequency does not satisfy fc = m/N for integer
m ∈ {0, . . . , N/2}

XDFT (k) =
ejφ

2

N−1∑
n=0

e−j2π
k−Nfc
N

n

︸ ︷︷ ︸
6=N∆[k−m]

+
e−jφ

2

N−1∑
n=0

e−j2π
k+Nfc
N

n

︸ ︷︷ ︸
6=N∆[N−k−m]

This is the leakage phenomenon and it occurs when fc 6= m/N (off-DFT
sinusoid).
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DFT: sinusoid on-DFT fc = 0.25 = m/N ,

m = 4, N = 64
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DFT: sinusoid off-DFT fc = 4.5/N
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DFT: two sinusoids on-DFT fci = mi/N ,

m1 = 4, m2 = 5, N = 64
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DFT: two sinusoids fci = mi/N ,

m1 = 4(on-DFT), m2 = 4.5(off-DFT), N = 64
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DFT: two sinusoids on-DFT fci = mi/N ,

m1 = 4, m2 = 5, N = 64
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DFT: two sinusoids fci = mi/N ,

m1 = 4(on-DFT), m2 = 4.5(off-DFT), N = 64
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FFT input scaling

Consider using standard 16-bit Q15 number representation in FFT
as in AIC3204.

Let input to the FFT be the cosine signal

cos(2πfcn) =
ej2πfcn + e−j2πfcn

2
, n = 0, . . . , N − 1

Overflow problem 1: The gain at the fc frequency (assuming it
matches some analysis frequency m/N) is N/2. If a 1024 point
transform is taken then the result might require 10-1+16 = 25 bits.

Overflow problem 2: A complex input with 16 bit Q15 real and
imaginary parts can overflow if a phase rotation occurs. For
example, 1 + j1 can rotate to 1.414 + j0 creating an overflow in the
Q15 real part.

This is why in lab 6 you will be implementing 32 bit precision
FFT’s.
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An approach to scaling

• Normalization

Consider a Q15 sinewave input having amplitude 1. Using 1/N
scaling on the forward transform, the magnitude of the FFT output
will be capped at 1/2.

• Distribute normalization over each of the log2(N) layers of FFT

Assume N = 2n is a power of two, n = log2N an integer. Then can
apply a scale factor of 1/2 to each layer of the FFT. The net effect
will be to scale the FFT operation by 1/N .
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Spectral analysis in digital domain
Digital spectral analysis of a continuous time signal x(t) of
bandwidth B

I Measure x(t) over a window of time t ∈ [0, T ).

I Sample measured signal at Nyquist rate Fs = 1/Ts = 2B to
obtain data record

x[n] = x(nTs), n = 0, . . . , N − 1, N = T/Ts = TFs

I Apply FFT to this data record

X[k] =

N−1∑
n=0

x[n]e−j2π
k
N n, k = 0, . . . , N − 1

I Compute spectrum
I Magnitude spectrum |X[k]|
I Power spectrum 1

N
|X[k]|2

I Phase spectrum argX[k]
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Example: sinusoid at frequency Fc = fcFs Hz.

x[n] = cos(2πfcn), n = 0, . . . , N − 1

XDTFT (f) =

N−1∑
n=0

cos (2πfcn) e−2πfn =
1

2

N−1∑
n=0

(
ej2πfcn + e−j2πfcn

)
e−j2πfn

=
1

2
gN (f − fc) +

1

2
gN (f + fc)

gN (ν) =

N−1∑
n=0

e−j2πνn

Use geometric series formula
∑M
n=0 a

n = (1− aM+1)/(1− a) to obtain

gN (ν) = Ne−jπν(N−1)
sin(πνN)

N sin(πν)︸ ︷︷ ︸
Dirichlet kernel
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DTFT of 16 samples of sinusoid: fc = Fc/Fs = k/N

Peaks are at fc, 1− fc. Zeros occur at Fc/Fs ± k/N , k an integer.
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DFT of 16 samples of sinusoid: fc = Fc/Fs = k/N

There is no leakage since fc is equal to k/N for the integer k = 4.
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DTFT of 16 samples of sinusoid: fc = Fc/Fs = 0.27

Peaks occur near fc, 1− fc. There are no zeros in DTFT
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DFT of 16 samples of sinusoid: fc = Fc/Fs = 0.27

There is leakage since fc is not equal to k/N for any integer k.
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DFT spectrum of sum of sinusoids

Q. What can we conclude about the time domain signal x[n] by
observing peaks in |X(k)| at frequencies f = k1/N, . . . , kp/N?

A. Not much unless |X(k)| at all other frequencies is zero.

The reason for the ambiguity on right panel is spectral leakage.
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DFT spectrum of sum of sinusoids

,

Time domain waveforms in spectra shown on previous slide (N = 64)

x[n] = cos(2πf1n) + 1/2 cos(2πf2n), n = 0, . . . , N − 1

I Left panel: f1 = 4/N , f2 = 5/N . Both analysis frequencies of
N-point DFT.

I Right panel: f1 = 4/N , f2 = 4.5/N . f2 not an analysis frequency
of N-point DFT. |f1− f2| is under DFT’s spectral resolution 1/N .
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DFT spectrum of sum of sinusoids

,

Illustration of scalloping distortion for two frequencies f1 = 0.1641
(= 10.5/N) and f2 = 0.3203 (= 20.5/N). N=64-point FFT.

x[n] = cos(2πf1n) + 1/2 cos(2πf2n), n = 0, . . . , N − 1
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DFT spectrum of sum of sinusoids

,

Leakage and scalloping dissapear if double the N for the same two
frequencies f1 = 0.1641 (= 21/N) and f2 = 0.3203 (= 41/N).
N = 128-point FFT.

x[n] = cos(2πf1n) + 1/2 cos(2πf2n), n = 0, . . . , N − 1
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Resolution vs sensitivity of DFT spectrum

Resolution and sensitivity are the primary ”quality” measures of a
spectral analysis method.
Frequency resolution: the minimum detectable frequency separation
of two sinusoids in the absence of noise.

Frequency resolution is Fs/N = 1/(NTs) = 1/T Hz.

Spectral sensitivity: the minimum amplitude of a sinusoid required
for detection against noise background.

Spectral sensitivity depends on several factors

I Nature of background noise

I Number of bits of amplitude resolution (Q(15), Q(31))

I The length of the analysis window T

I Signal-to-noise power ratio (SNR)
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DFT spectrum with no nse: 10k vs 100k pts

Top: 16384-pt (214) FFT, Bottom 131072-pt (217) FFT
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DFT spectrum with no nse: 10k vs 100k pts

Top: 16384-pt (214) FFT, Bottom 131072-pt (217) FFT
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DFT spectrum with 0dB nse: 10k vs 100k pts

Top: 16384-pt (214) FFT, Bottom 131072-pt (217) FFT

EECS 452 – Fall 2014 Lecture 11 – Page 26/57 Tue – 10/07/2014



DFT spectrum with 0dB nse: 10k vs 100k pts

Top: 16384-pt (214) FFT, Bottom 131072-pt (217) FFT
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DFT spectrum with 0dB nse: 1M vs 10M pts

Top: 1048576-pt (220) FFT, Bottom 16777216-pt (224) FFT
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Summarize: DFT spectrum

|XDFT [k]|, k = 0, . . . , N − 1

I DFT index k corresponds to digital frequency fc = k/N and Hz
frequency Fc = Fsk/N .

I Leakage occurs for any frequency component not at one of DFT
analysis frequencies Fsk/N , k = 0, . . . , N/2.

I Frequency resolution of DFT spectrum is Fs/N . This is the
minimum frequency separation that can be detected.

I If x(t) is a sum of p sinusoids

x(t) = A1 sin(2πF1t+ φ1) + · · ·+Ap sin(2πFpt+ φp)

Then sinusoids can be detected from DFT spectrum if:
I There are no more than p = N/2− 1 sinusoids
I The sinusoidal frequencies Fi are all less than Fs/2 Hz.
I The frequency Fc of each sinusoid is distinct and satisfies

Fc/Fs = k/N, k ∈ {0, . . . , N/2}
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How to combat leakage and ambiguity?

Method that is effective: use longer analysis window (increase T )

→ this always reduces leakage for ”long duration” (stationary) signals.

Methods that are not effective for leakage mitigation

I Zero padding, decimating or interpolating the DFT

I Computing the full DTFT

Methods that can be effective

I If frequency estimation is the objective, use a different ”high
resolution” spectrum estimator (signal subpace, MUSIC)

I Apply a non-rectangular time window to data prior to DFT
(”windowing the data”)
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Windowing data to compensate for leakage
The IDFT of XDFT [n] is periodic with period N :

xIDFT [n] =

N−1∑
k=0

XDFT [k]ej2πkn/N

Therefore a cyclic shift of the input does not change magnitude spectrum.

The following have identical magnitude DFT’s:

[{x[0], . . . , x[N − 1]} and {x[N/2], . . . , x[N − 1], x[0], . . . , x[N/2− 1]}

Spectral leakage can be attributed to the ”discontinuity” at the endpoints
of the analysis window

Can mitigate leakage by downweighting the input near endpoints by
multiplying data x[n] with a window function.

There is a cost to doing this. Multiplication in the time domain results in a
convolution in the frequency domain. The response will be smeared a bit
and the values will be attenuated some.
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Illustration of cyclic discontinuity effect

Plot of samples and the
rect. window function.

Weighted samples shown
re-centered at end point
splice.

dB plot of the spectrum
of the windowed samples.
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Windowing

Select portion of waveform to analyze.

DFT enforces periodicity. . . what happens at the ends?

Weight or shade the data to minimize end effects.

Multiplication in time corresponds to convolution in frequency.

X(k) =

N−1∑
n=0

w[n]x[n]e−j2πkn/N , k = 0, 1, . . . , N − 1.

Multiplication in the time domain corresponds to convolution
(filtering) in the frequency domain.
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Many window functions to choose from
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Window functions used in lab
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Rectangular window (no window)

Plot of samples and the
window function.

Weighted samples shown
re-centered at end point
splice.

dB plot of the spectrum
of the windowed samples.
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Hamming window

Plot of samples and the
window function.

Weighted samples shown
re-centered at end point
splice.

dB plot of the spectrum
of the windowed samples.
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Chebyshev 72 dB window

Plot of samples and the
window function.

Weighted samples shown
re-centered at end point
splice.

dB plot of the spectrum
of the windowed samples.
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Unmasking a low level sinewave
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What are the downsides of windowing?

Main lobe width spreads energy of a frequency component (line) in
DTFT. This causes loss of nearby resolution.

Frequency component line amplitudes are reduced.

Scalloping loss causes masking of frequency line that falls midway
between adjacent lines.

May need increased numeric precision to implement a window
accurately.
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The short time Fourier transform (STFT)

A method for performing time varying spectral analysis with the
DFT.

The STFT of a discrete time signal x[n] is defined as

Xm(f) =

∞∑
n=−∞

x[n]w[n−mL]e−j2πfm

Where:

I w[n] is a length N window function, e.g., rectangular, hanning,
hamming, etc

I L controls the overlap of successive windows for successive
output times m (L = N no overlap, L = 1 overlap by N − 1
samples).

I f is analysis frequency of interest

Note: X0(f) is ordinary windowed DTFT
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Short time fourier transform example

http://www.originlab.com/index.aspx?go=Products/OriginPro also see

http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/audio_1_processing/.

EECS 452 – Fall 2014 Lecture 11 – Page 42/57 Tue – 10/07/2014



Using DFT as a filter

Define the sliding DFT (identical to STFT for rectangular window
and L = 1)

Xn[k] =

N−1∑
m=0

x[n−m]e−j2πfkm, fk = k/N

This produces a time varying DFT that changes over sequential
samples. For a fixed value of k we can think of the sliding DFT as a
filter with input x[n] and output y[n].

y[n] =

∞∑
m=∞

hk[m]x[n−m]

where hk[m] = wN (m)e−j2πfkm, wN (m) is rectangular window

{hk[0], . . . , hk[N − 1]} = {1, e−j2πfk , . . . , e−j2πfk(N−1)}

EECS 452 – Fall 2014 Lecture 11 – Page 43/57 Tue – 10/07/2014



Using DFT as a filter
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k = 21 (magnitude of DFT at bin 21 by sweeping input ej2πft

through frequencies from −Fs/2 to Fs/2). Note: no conjugate
symmetry since filter hk[m] is complex valued.
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The DFT filterbank
Sliding DFT as a bank of N bandpass filters with passbands at
fk = k/N (In figure: ωkT = 2πk/N).

https://ccrma.stanford.edu/~jos/sasp/Filter_Bank_Summation_FBS.html
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Illustration: Chirp signal

https://ccrma.stanford.edu/~jos/sasp/Filter_Bank_Summation_FBS.html
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Interrupts

Interrupts are asynchrounous processes (off clock cycle) that are
very common in embedded real time systems.

They are used in the real time implementation of the FFT that you
will implement in Lab 6.

Several steps of interrupt handling

I Enabling: choose the inputs that are allowed to interrupt,
keeping track of interrupt priority rankings

I Storing: save the entry state - the system state (data,
instruction pointer) when an interrupt occurs.

I Branching: Specify the interrupt service routine (ISR)

I Restoring: restoring the system state to entry state after
interrupt processing has completed
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Interrupts

Common problems associated with poor interrupt handling

I Race conditions: interrupt processes collide with each other,
e.g, try to write same memory block at the same time

I Non re-entrant functions: interrupt branch never comes back.
Entry state is never restored.

I Missing volatile keyword: volatile should be used to declare
all global variables accessed by an interrupt process and other
parts of code.

I Stack overflow: interrupts cause too many writes to memory.

I Heap fragmentation: usually due to dynamic memory
allocation malloc(). Not a best practice in embedded systems
programming.
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Transfer function measurement techniques
Apply a sinewave at a given frequency to a filter’s input. Measure the
output’s amplitude and phase. Step the frequency. Repeat. Straight
forward but hides any non-linear effects.

Use spectrum analyzer with peak hold capability. Slowly sweep a
sinewave over the band of interest. Useful for checking for harmonics
caused by nonlinearities. Phase is problematic.

Use white noise input. The the resulting power spectrum is K|H(F )|2.
Phase response can also be obtained using cross spectra. Does all
frequencies at once but needs much statistical averaging.

Use wideband PN-sequence, direct or modulating a carrier, to generate a
broadband waveform. Transform both filter input and output using a
prime factor FFT. Divide input transform into the output transform.
This might be covered by US Patent 4,067,060.

First three methods are common in practice and each has it’s place.
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Target design

EECS 452 – Fall 2014 Lecture 11 – Page 50/57 Tue – 10/07/2014



Basics

I Reference cosine/sine waveforms generated by DDS. Only need
one DDS.

I In effect, multiplication is by e−j2πFct. Shifts the Fc term to 0
Hz. Also shifts −Fc term to −2Fc.

I Sliding average filter has real good null at −2Fc if we integrate
over precise number of periods of Fc.

I Convert x and y into polar form.

I Repeat measurements incrementing value of Fc each time to
sweep out transfer function, magnitude and phase. Need
provide for filter settling time after each step.

I Display/log/hardcopy.

EECS 452 – Fall 2014 Lecture 11 – Page 51/57 Tue – 10/07/2014



Basic measurement system block diagram

You need to remove the effects of the measurement system from the measurement!
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Test selection

Simple tests used to check understanding and the ability to act on
that understanding.

I Test 1: A/D to D/A channel check. Right in copied to left out.

I Test 2: Output cosine on right D/A and sine on left D/A.

I Test 3: Left in to filter, filter to left out.

I Else: Filter transfer function measurement.
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The basic math

Input to filter: A cos(2πFct) = A
2

(
ej2πFct + e−j2πFct

)
.

Output of filter:

H(Fc)A cos(2πFct) = A|H(Fc)| cos[2πFct+ θH(Fc)],

=
A|H(Fc)|

2

(
ej[2πFct+θH(Fc)] + e−j[2πFct+θH(Fc)]

)
.

Multiply the input and output by e−j(2πFct+θ) and low pass filter:

Input to filter: A2 e−jθ.

Output of filter:
A|H(Fc)|

2 ej[θH(Fc)−θ].
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Recall . . .

Averaging N values is equivalent to filtering the samples.

HA(F ) =
e−jπ(N+1)F/Fs

N

sin(πNF/Fs)

sin(πF/Fs)
.

The gain at F = 0 is 1. The gain at F = −2Fc is∣∣∣∣ sin(πN2Fc/Fs)

sin(π2Fc/Fs)

∣∣∣∣ .
This equals 0 for 2πNFc/Fs = kπ where k is an integer. For these
values

Fc =
kFs
2N

.
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Summary of what we covered today

I Leakage, windowing, spectral estimation

I Interrupts

I Transfer function measurement
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