(Modestly) Real-time Matlab:
Prototyping your DSP solution

G. Wakefield

EECS 452
090CT14

EECS452F14: Wakefield



Scope

Demos 1, 2, 3
Build around an audio example
— Generalizes to any one-dimensional signal of interest

Techniques

— fdatool: how to integrate into your own algorithm
development

— DSP toolbox: real time support at the function and object
level (no block diagram/Simulink)

— GUI programming: how to integrate user response into
your system development and testing

Resources
— (Judicious) browsing through Matlab’s documentation



Toy Problem

* Implement a 3-band audio equalizer in
Matlab.

Your solution should provide a means for the user to
load their own audio files, play them back, and adjust

the gains of the equalizer bands in real time.

EECS452F14: Wakefield



Reality Checking

* Never solve a problem for which you haven’t
studied the prior art.

— Use your favorite music app as a model.

f Sea Shanty
<« Il »» e Kato Wakefield — Eyes In Walls Are Louder = Q- Search Library
217 C— e 301 2
3 Music Radio Songs  Abums (Arists | Genres Videos  Playlists  Match iTunes Store
Kate Wakefield : -
Kate Wakefield » = ©
4 Albums, 18 Songs
Kenny Wayne Shepherd
Lalo Schifrin and John E. Davis Eyes In Walls Are Louder 2014
T 1 Trying To 3:23
WY Leonard Bernstein D9
s > Home 1

BOOI |
Los Angeles Philharmonic & G...

Luther Allison

Mike Bloomfield, Al Kooper &...

Patrick Sound Engineer

wll
7]

The Paul Butterfield Blues Band

Pentangle

n Poncho Sanchez

3 Snow Falls on Eyeless Streets

. When | Was Young
5 Quiet
6 From The River

Sea Shanty

8 Ballad
9 Long Road

EECS452F14

: Wakefield

Acoustic

Equalizer

v



Particulars

. Sea Shanty
<« |] »» ep» Kate Wakefield — Eyes In Walls Are Louder = Q- Search Library

= 217 CE— 301 24

ﬂ Music + Radio Songs Albums Artists Genres Videos Playlists Match iTunes Store
| Kate Wakefield Kate Wakefield > %= ©
o 4 Albums, 18 Songs
We== Kenny Wayne Shepherd
m Lalo Schifrin and John E. Davis Eyes In Walls Are Louder 2014
™ 1 Trying To 3:23
LY Leonard Bernstein vingiers
: 2 Home 5:21
Los Angeles Philharmonic & G 3 Snow Falls on Eyeless Streets 7:56
4 When | Was Young 4:34
Luther Allison 5 Quiet 4:09
6 From The River 2:55
Mike Bloomfield, Al Kooper &... ) Sea Shanty 5:19
8 Ballad 4:14
Patrick Sound Engineer 9 Long Road 7:50

The Paul Butterfield Blues Band Equalizer

Pentangle ' =
. . 1 On | Acoustic

Poncho Sanchez
+12dB I l I |
- (@)
(®)

k22222

Preamp 125 250 500 1K 2K 4K 8K 16K

“p

EECS452F14: Wakefield



Particulars

Kate Wakefield — Eyes In Walls Are Louder
301 4

|

Q- Search Library

[BUEE| Lalo Schifrin and John E. Davis
Leonard Bernstein
BUBINEY| # .

= ‘« Los Angeles Philharmonic & G...
¥ | uther Allison

e
i Mike Bloomfield, Al Kooper &...

fl The Paul Butterfield Biues Band

- Pentangle
H Poncho Sanchez

Patrick Sound Engineer

On
I +12dB
19/ 0dB
I -12dB
Preamp

f Sea Shanty
<« [l »» eiw» ate Wakefie
5 = 217 ;

o Songs

Kate Wakefield
4 Albums, 18 Songs

Albums Artists Genres Videos

> 20

Eyes In Walls Are Louder

1 Trying To

2 Home

3 Snow Falls on Eyeless Streets
4 When | Was Young

5 Quiet

6 From The River
) Sea Shanty

& Ballad

9 Long Road

Equalizer

Playlists Match

iTunes Store

2014

3:23

EECS452F14: Wakefield

* Selectable file(s)
* Playback controls
e Output level control

Bandpass filters
Parallel (filterbank) construction
Range of gains (-12 to +12 dB)

Center frequency organized
logarithmically



Toy Problem (Details)

* Implement a 3-band audio equalizer in Matlab.
Your solution should provide a means for the user
to load their own audio files, play them back, and
adjust the gains of the equalizer bands in real
time.

— Lowpass (Bass): 320 Hz cutoff
— Bandpass (MidRange): 320 — 1280 Hz
— Highpass (Treble): 1280 Hz cuton

EECS452F14: Wakefield



Toy Problem (Details)

Sea Shanty
Kate Wakefield — Eyes In Walls Are Louder = Q- Search Library
217 C— ) 301 /3

<« |l »» e

53 Music : Radio Songs  Abums (Arists | Genres Videos  Playlists  Match iTunes Store
D oo Weketeld Kate Wakefield » = ©
4 Albums, 18 Songs
Kenny Wayne Shepherd
Lalo Schifrin and John E. Davis Eyes In Walls Are Louder 2014
1 Trying To
Leonard Bernstein &Y
2 Home
3
Los Angeles Philharmonic & G... SRSHoW el 0n = velces Sueets
4 When | Was Young
Luther Allison e Gi
& From The River 2:55
Mike Bloomfield, Al Kooper &... 4) Sea Shanty 5119
8 Ballad 4:14
Patrick Sound Enaineer 9 Long Road 7:50. b
Equalizer MATLAB R2014a
e b & O Acoustic D
New Variable Analyze Code o Preferences (o) (§ Community
. Penta +12dB \’_H:‘L o2 I (3] Find Files &; = < FNEE] @ @ &
= L} Open variable v (i Run and Time - (7 Set Path ) Request Support
New New Open |[|Compare Import  Save Simulink ~ Layout Help
n Ponct a) (& X Script v« Data Workspace [ Clear Workspace v |7 Clear Commands v Library ~ [l paraltel ~ v G JAdd-Ons ¥
0dB ° ) ) = < ) FILE 'VARIABLE CODE SIMULINK RESOURCES
‘o)
@ & (& & [0/ » Users » gregoryw2 » Documents » MATLAB M
Current Folder ® = Command Window ® | Workspace ®
B (Name & - Name & Value [0
-12dB =
Preamp 32 64 125 250 500 1K 2K 4K 8K 16K

As far as the rest
goes? Hmmmm...

Details v

Select afile to view details

-~ Ready

EECS452F14: Wakefield



Demo 1: Filtering and streaming

* outsig = filter(filter spec, insig)

 Matlab support

— Audio i/o: standard and real-time
* audioreader
* audioplayer
e audiowriter
— Filter design
 fdatool
e exporting to the workspace and storing

— Filter object
» state playing the role of memory when crossing frame boundaries



Demo 1: Filtering and streaming

demol _a.m
— audioread, audioplay
fdatool

— Design lowpass, bandpass, highpass filters to meet specs, export as filter
objects, save in MAT file

demol b.m
— Apply FIR designs
demol c.m
— Apply Butterworth IIR designs
demol d dynamicEQ.m
— Naive attempt to filter over blocks of the signal
demol (e...g) debug dynamicEQ.m
— Why we need a filter object to process dynamically over time
demol_h_realtime_Audio.m

— DSP object level support for audio I/O: creating and destroying objects, the
step and isDone methods

demol_i_realtime_AudioEQ.m
— Putting all the pieces together in a partial solution to the original problem



Demo 1: Notes

* outsig = filter(filter spec, insig)
— outsig has the same dimensions as insig (wrong in any real application)
— break the filter operation into processing frames of insig

* Efficient use of memory

* Don’t wait for batch processing to finish

* Matlab support
— Audio i/o: standard and real-time versions

* audioreader: supports a variety of commercial formats
* audioplayer: supports a variety of playback rates and bit-depths

* DSP implementation: output buffering dictated by size of sound card buffer and OS servicing
times[

* Audiowriter: [not explored]

— Filter design
* fdatool: “industrial strength” encapsulation of 40 years of research and development in digital
filters

* exporting to the workspace and storing: it’s all about filter objects, not simply the numerator
and denominator polynomial coefficients of the transfer function; use MAT files (or explore
Mathwork’s fda filter design management tool).

— Filter object

* PersistentMemory: state playing the role of memory when crossing frame boundaries
EECS452F14: Wakefield



Demo 2: GUI programming

demo2 a.m

— load and play and audio file using pushbutton controls
demo2 b.m

— refine the user workflow of 2_a

— taking advantage of OpeningFcn

demo2 c.m

— add “pause/resume” and “stop” functionality

— interrupting the playback loop using “drawnow”
demo2 d.m

— add ability to adjust filter gains using “sliders”

— avoiding extra event management — read state
whenever possible (e.q., slider callbacks are factory
stubs)



Demo 2: GUI programming

* guide
— UlObjects: pushbutton, slider
e anatomy of a Matlab GUI
— Use guide to create visual layout

— Program inside the factory-produced callback
function stubs

— Data structures to support GUI

e working within the “realtime loop”



Demo 2: GUI programming
demo2_a.m/fig

— load and play and audio file using pushbutton controls
demo2_b.m/fig

— refine the user workflow of 2_a

— taking advantage of OpeningFcn

demo2_c.m/fig

— add “pause/resume” and “stop” functionality

— interrupting the playback loop using “drawnow”
demo2_d.m/fig

— add ability to adjust filter gains using “sliders”

— avoiding extra event management — read state
whenever possible (e.q., slider callbacks are factory
stubs)



Demo 2: Notes

guide

— UlObjects: pushbutton, slider
manage visual display graphically;, program the functionality
within standard Matlab functions

anatomy of a Matlab GUI
— Use guide to create visual layout
— Program inside the factory-produced callback function stubs

— Data structures to support GUI
handles = guidata(hObject) (get fresh copy)
guidata(hObject,handles) (update handles)

working within the “realtime loop”
use uicontrols to update state information; minimize the
queue of events outside the loop as much as possible

EECS452F14: Wakefield



Demo 3: Systems Thinking

Filter objects

— Designing filters within your GUI rather than
loading from an external file

System objects

— outsig = filter(Eq,insig)

— Creating cascade and parallel systems

— Modifying components of the system on the fly

Working within the “realtime loop”
Re-use old code: conceptual plug-ins



Demo 3: Systems Thinking

* demo3_a_ preps, demo3 a.m/fig

— cascade and parallel objects: stages

— updating attributes of stages on the fly

— taking full advantage of OpeningFcn
» demo3 b preps, demo3 b.m/fig

— add filter design functionality to app
 demo3_c.m/fig

— re-purpose sliders for variable (f,Q) comb filter



Demo 3: Notes

Filter objects

— Designing filters within your GUI rather than loading from an external file
Use fdesign to specify filter parameters; use design to create filter object. Rich

collection of filter types — see fdesign documentation.

System objects
— outsig = filter(Eqg,insig)
— Creating cascade and parallel systems
— Modifying components of the system on the fly
Access components through stages; update filter coefficients while preserving

state information; caveats abound: transient artifacts when filters change too
quickly, requires filter order/structure remains invariant across updates.

Working within the “real-time loop”

An operational test of an algorithm that you intend to port to a stand-
alone DSP. Provides a working environment in which to assess acceptable
throughput delay (system responsiveness). ldentify computational
bottlenecks and evaluate design trade-offs.

Re-use old code: conceptual plug-ins
In principle, any time-varying linear system can be inserted into the basic

structure of the demo3 apps. Compare demo3_a, b, c.

EECS452F14: Wakefield



Additionals

* Latency

Audio playback: QueueDuration, BufferSize

GUI refresh (drawnow)

algorithm complexity

algorithm memory

demo4_latency exercises radiobutton alternative and manipulation of playback buffers
If it’s such a problem...are there other solutions?

 How to use Matlab to prototype your DSP solution

Latency, complexity and frame rates

Sensitivity to finite-precision implementations, e.g., rather than loading DSP double-precision filters,
load DSP single-precision filters of various forms

Evaluate design tradeoffs with respect to user criteria

Explore the catalog of solutions: DSP System , SP, System Identification, and IP Toolbox examples
(to mention just a few). Other System Objects (scopes, spectrum analyzers, etc.)

e (Caveats

Matlab implementation vs. DSP implementation

Clock the execution times for FIR and IIR in demol_b and demol_c. Compare with the complexity of
each. Does this make sense?

Don’t over- or under-design. Much is known about the sensory/motor constraints imposed by the
user. Learn what these are.

Matlab should be running natively on your PC. Don’t try to go through a CAEN network...



