
Voice Controlled Retrieval System
EECS 452: Senior Design Project

Matthew Edelman – Jeffrey Duperret – Ryan Mazur – Eric VanBuhler – Yan Qi

Introduction

This project is a proof of concept design for
robotic aid system for the disabled and elderly.
The concept is that the user will command the
robot to retrieve an object via voice command,
and the robot will autonomously navigate its
current environment returning the desired object
to the user. Our system includes:

• Remote controlled tank as the robot
• Colored ping pong balls as the objects
• Noise cancelling microphone for voice input
• FPGA: color filter, visualization & robot control
• DSK: speech recognition & path planning

Speech Recognition

VisualizationColor Filter Robot Control

The Speech Recognition Engine has three main steps:

1. Record Sample

Following a short tone, a 2 second sample is
recorded with an 8kHz sample rate. To
reduce ambient noise, a noise cancelling
headset is used. It uses two microphones:
one pointed at the mouth and one pointed
away. The ambient noise picked up from the
microphone pointed away is removed from
the voice signal.

2. Create Mel Coefficient Matrix

1. Take the FFT of 10ms sections of the
recorded sample

2. Find log power spectrum and log energy for
each 10ms section

3. Apply mel filter
4. Normalize with the energy and take log

energy

3. Compare Matrices

Compare the log mel power spectrum matrix
to stored matrices by calculating distances.
To calculate the distance, a dynamic
programming technique is used to find the
minimum distance in a group of points and
use that to find the min distance in the next
group of points. A path of the minimum
distances is found and the value at the end of
the path(upper right corner) is the minimum
distance between the matrices.Visualizations of “red” spoken

“red” compared to “red”

Distance=579.121

“red” compared to “blue”

Distance=720.081

The color filter implemented on the FPGA analyzes the image
captured from the camera to get the central position of objects in
different colors. The position information is constantly updated and
is used for Robot Control and Visualization.
Process:
1. Scans through the whole frame by row
2. Stores the calibration value of chosen color
3. Compares the calibration value with the scanned pixel quad
4. Averages the first and last pixel positions to locate the center
5. Returns the location information, encodes the data and sends it to DSK

Our algorithm continuously scans the pixels in
the image one at a time. If a pixel’s 8 bit RGB
representation matches the pixel template for a
specific object, then a white pixel is outputted to
the VGA display. If not, a black pixel is outputted.
This gives the user the same information that
our object detection algorithm is given; a binary
representation of if the camera sees an object or
not.

Color filter output

Overview: A small, radio-controlled toy is used as the
robot. It has simple digital controls and is able to turn
left or right in place, and can move forwards or
backwards.

Control: The remote control has been modified to be
connected directly to the FPGA. Commands are sent
from the DSK to the FPGA.

Coordinates: Two sets of coordinates are used for the robot; a coordinate
for the front and rear. From this we calculate the orientation of the robot
in 2-D space using these coordinates. These values are calculated on the
FPGA and sent to the DSK in real time.

Path Planning: The key component behind path
planning and robot control is the overhead
camera. The final output of the image processing
algorithms is a set of X and Y coordinates. These
are transferred from the FPGA to the DSK as 16-
bit words. These coordinates are then used by
the software running on the DSK to control the
robot. The control algorithm implements a
simple state machine.

Significance: Visualization is a critical aspect of our project, as it gives a method
of understanding what the algorithm is doing. This is both necessary in
debugging, and it gives the user a sense of how our system works.

Output object tracking: To see how well our method track objects, we place a
white square over them as they move. The FPGA is given the location of the
objects from the color filter algorithm, and if the current pixel being read in is
located on a specified square surrounding the object then a white pixel is
outputted, if not then the original pixel is outputted.

Assist with calibration: The camera distinguishes objects according to object
color. We assign these colors by placing the objects in known positions on the
scene that the camera receives, extracting the pixels at the known location, and
assigning those pixel colors to each object. To accomplish this, the user must
know where to place the objects when calibrating their color values. Our
algorithm outputs white pixels in those locations over the image to the user to
facilitate this process.

As shown in the figure to the right,
our algorithm outputs object
detection and tracking. The
algorithm is also used in specifying
object color to detect objects.

