Audio and Video Gaming Control

MichiganEngineering

Project Overview

Developed By:

Caleb Larner, Evan Madej, Robert Napier, Theo Rabban, Mike Shen, Robert Towne

EECS 452 Digital Signal Processing Lab

With the recent popularity in motion controlled video gaming,
such as Microsoft’s Kinect, Nintendo’s Wii, and the PlayStation
Move, we decided to implement our own controller for a personal
computer.

Our project is a combination of video and audio processing used
to control a video game with limited commands. For this project,
we chose to demonstrate the ability of the controller with the
game Tetris.

Camera inputs discern motion commands by detecting the red
glove, while a microphone is used to recognize audio commands
from a library of speech commands.

A small microprocessor, the Texas Instruments C5515, was used to
process the audio signals, while an Altera DE2-70 FPGA was used
to process the video inputs as well as interface with the computer
over a PS/2 keyboard interface.

Audio Processing

BVl

Video Processing

On the video end, we use a small camera to capture red glove
movements on screen. The camera outputs the pixel values in a
Red-Green-Blue (RGB) format, which we then convert to a Hue-
Saturation-Value (HSV) format on the DE2-70 FPGA. HSV is less
sensitive to lighting conditions and gives us a more accurate pixel
color representation. Using these values, we set a threshold to
detect red pixels and filter the HSV image into a binary image,
where red is 1 (on) and everything else is 0 (off). By locating
regions on the screen where there are significant portions of red
(binary 1’s), we can determine where the glove is. When the
glove is in a particular region, we send a signal over the PS/2
keyboard interface telling the computer to take the respective
action in the video game.

Camera — RGB — HSV — Thresholding — Binary Image — Region Detection — PS/2 — Computer

Original Image

Binary Image

On the audio end, we use a headset with a built-in microphone to
capture the various commands for the video game. The audio is
first sampled and then segmented into frames. Each frame is run
through a Mel Filter and stored in a library on the C5515 chip.
Once every command is stored, we capture audio commands from
the user and compare those commands with the stored library
commands using a Dynamic Time Warping Algorithm (DTW). DTW
finds the smallest distance between two audio frames and
chooses which word was sent by the user. Once a word is chosen,
it is sent out as a command over the SPI interface to the FPGA.
The FPGA then sends the corresponding command through the
PS/2 keyboard interface telling the computer to take the
respective action in the video game.

Headset —Thresholding — Sampling — Framing — FFT — Mel Filtering -DTW — SPI —-FPGA

Mel Filter Bank

+ freq
Energy in
- 7 | Each Band

MELSPEC

http://www.ee.uwa.edu.au/

Communication

System Diagram

FPGA

Board Extender Keyboard Commands

C5515
A DSP Chip

The main components are:

« NTSC Camera

« Headset with Microphone
 DE2-70 FPGA

« (5515 DSP Microprocessor
* PS/2 Connector

* Personal Computer

PS/2 Protocol

Keyboard commands were transmitted through a PS/2 interface
between the DE2-70 FPGA and the PC. Below is a chart detailing
the device (DE2-70) to host (PC) serial communication for an 8 bit
data transmission:

ELDEK||| ||||||
pata® A A A A K N KK K

PPPPPPPPP

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

http://www.computer-engineering.org/ps2protocol

The Host (PC) reads the data signal on the falling edge of the
clock. The device (DE2-70) sends the clock signal when data
needs to be transferred, but ultimately the Host (PC) has control
of the wires.

SPI Protocol

To transmit data between the Tl C5515 Microprocessor and DE2-70
FPGA, a Serial Peripheral Interface (SPI) bus was used. SPl is a
four wire bus that operates in a “full duplex” (2 way data
transmission) mode. In our current setup, the C5515 is the
“master” device, while the FPGA is the “slave”. Below is a
simplified picture of the SPI bus:

SCLE * SCLE
SPI MOS] * MOSI SPI

Master MSO 44— MISO Slave
55 B S5

Future Work

« Refine movement sensitivity and control

« Add more voice commands

* Reconfigure for multiple games

« Configure for mouse cursor control

Acknowledgements

A special thanks to:
Altera Professor Kurt Metzger
Intel Professor Mark Brehob
Texas Instruments GSI Chao Yuan

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

