
EECS 455 Solutions to Problem Set 2

1. Problem 2.1 of Text: 1)
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Completing the square in terms of αi we obtain
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The first two terms are independent of α’s and the last term is always positive. Therefore the
minimum is achieved for
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which causes the last term to vanish.

2) With this choice of αi’s
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2. Problem 2-9 of Text 1) Since � a � b � 2 � 0 we have that
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Then substituting αi � A for a and βi � B for b in the previous inequality we obtain
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Equality holds if αi
� kβi, for i � 1
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2) The second equation is trivial since � xiy 
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The inequality now follows if we substitute zi
� xiy 
i . Equality is obtained if zi � R
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�
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Combining the two inequalities we get����� n
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From part 1) equality holds if αi
� kβi or � xi � � k � yi � and from part 2) xiy 
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i � e jθ.

Therefore, the two conditions are � � xi � � k � yi ��
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which imply that for all i, xi
� Kyi for some complex constant K.

3) The same procedure can be used to prove the Cauchy-Schwartz inequality for integrals.
An easier approach is obtained if one considers the inequality� x � t � � αy � t � � � 0
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3



3. A communication system transmits one of three signals:

s0 � t � � Acosωct pT � t �
s1 � t � � 0

s2 � t � � � Acosωct pT � t �
over an additive white Gaussian noise channel with spectral density N0 � 2. Let r � t � denote
the received signal (r � t � � si � t � � n � t � ). The receiver computes the quantity

Z � � T

0
r � t � cosωctdt

�
Assume ωcT � 2πn for some integer n. Z is compared with a threshold γ and a threshold� γ. If Z � γ, the decision is made that s0 � t � was sent. If Z � � γ, the decision is made that
s2 � t � was sent. If � γ � Z � γ the the decision is made in favor of s1 � t �

(a) Determine the three conditional probabilities of error: Pe � 0 � probability of error given
s0 sent, Pe � 1 � probability of error given s1 sent, and Pe � 2
Solution: Assume signal 0 is transmitted. The decision variable is
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�
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�

where η is a Gaussian random variable. The mean of η is zero and the variance of η is
calculated as
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The probability of error given signal 0 transmitted is then

Pe � 0 � P
�
AT � 2

� η � γ �� P
�
η � γ � AT � 2 �� � γ � AT � 2� ∞

1�
2πσ

e
� u2 � � 2σ2 � du� Q � AT � 2 � γ

σ
�

Similarly

Pe � 2 � P
� � AT � 2

� η � γ �� Q � AT � 2 � γ
σ

� �
Finally

Pe � 1 � 1 � P
� � γ � η � γ �� 1 � �Φ � γ � σ ��� Φ ��� γ � σ � �� 1 � Q ��� γ � σ � � Q � γ � σ �� 2Q � γ � σ �

(b) Determine the average error probability assuming that all three signals are equally prob-
able of being transmitted. Solution: The average error probability is

P̄e
� 1

3
Pe � 0 � 1

3
Pe � 1 � 1

3
Pe � 2

4. A signal s � t � of duration T consists of 15 consecutive pulses (of duration T � 15) of amplitude�
1. The sequence of amplitudes is (-1 -1 -1 -1 +1 -1 +1 -1 -1 +1 +1 -1 +1 +1 +1). Data

is transmitted using this signal. The data sequence 011010 is transmitted in 6T seconds by
transmitting the signal s � t � for the first T seconds, � s � t � T � during the interval � T � 2T � ,� s � t � 2T � during the interval � 2T

�
3T � and so on. The total signal transmitted is thus

s � t ��� s � t � T �
� s � t � 2T � � s � t � 3T ��� s � t � 4T � � s � t � 5T �
Assume that this signal is input to a linear time-invariant system (filter) with impulse re-
sponse h � t � � s � T � t � . Find (plot) the output of the filter.

Solution: This is most easily calculated by using the output to a single T second waveform
and adding delayed and multiplied version together.
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The output is shown below.
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5. A data signal consists of an infinite sequence of rectangular pulses of duration T . That is

s � t � � ∞

∑
l � � ∞

bl pT � t � lT �
where pT � t � is 1 for 0 � t � T and zero elsewhere. The data is represented by bl and is either
+1 or -1. The signal is filtered by a low pass RC filter with impulse response

h � t � � e
� αtu � t �

where u � t � is one for t � 0 and is 0 otherwise. The filter output is sampled every T seconds.
Find the largest possible value (over all possible data sequences) of the sampled output and
the smallest possible positive value for the sampled output.

Solution: The largest possible value is obtained when the data sequence is all ones. The
filter output corresponding to that data sequence is

ŝ � T � � � T� ∞
h � T � τ � dτ� 1

The smallest possible positive value is obtained when the data sequence is all negative except
the last bit. The output at time 0 due to a constant negative pulse starting at time � ∞ and
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ending at time 0 is -1. At time T the output due to this pulse is � e
� αT . The output at time T

due to a positive pulse starting at time 0 and ending at time T is 1 � e
� αT . The total output

is then the sum which is 1 � 2e
� αT .

6. White Gaussian noise with power spectral density N0 � 2 is the input to an RC filter with
impulse response

h � t � � e
� αtu � t �

where u � t � is one for t � 0 and is 0 otherwise. Find the variance of the noise at the output of
the filter.

Solution: The variance of the noise at the output is

σ2 � N0

2

� ∞� ∞
h2 � t � dt� N0

2
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0
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2
� � 1

2α
e
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 ∞
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4α
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