
EECS 455 Solution to Problem Set 3

1. (a) Is it possible to have reliably communication with a data rate of 2.5Mbps using power
P � 3 � 10 � 12 Watts with a bandwidth of W � 1 MHz and a noise power spectral density of
N0
2

� 10 � 18

2 Watts/Hz?

Soltuion: According to Shannon’s theorem reliable communication is possible if

R � W log2
�
1 � P

N0W

�
� 106 log2

�
1 � 3 � 10 � 12

10 � 18106

�
� 106 log2

�
1 � 3

�
� 106 log2

�
4
�

� 106 � 2� 2Mbps

Thus reliable communication is possible upto the rate of 2Mbps. So 2.5Mbps is not possible.

(b) A communication system uses BPSK in a (null-to-null) bandwidth of 1 MHz with power
P � 5 � 10 � 12 Watts in the presence of white Gaussian noise with two-side power spectral
density N0

2
� 10 � 18

2 . An error probability of Q
�	�

20
�

is desired. What data rate is possible?

Soltuion: The error probability for BPSK is

Pe
� Q

��
 2E
N0

�
So the signal to noise ratio must satisfy

E
N0

� 10

PT
N0

� 10

P � R
N0

� 10

R � P
10N0� 5 � 10 � 12

10 � 10 � 18� 5 � 105

Thus there is enough power to provide reliable communication at a data rate of 500 kbps.
In addition, at that data rate the (null-to-null) bandwidth is 1MHz so there is also enough
bandwidth.

1



(c) For the same parameters as part (b) except the error probability requirement was Q
� �

2
�

what data rate would be possible?

Solution: Since the energy requirement has been reduced by a factor of 10 the data rate
could potentially increase by a factor of 10. However, the bandwidth would not allow it.
Thus the maximum data rate is still 500kbps.

2. (a) Simulate a communication system that uses rectangular pulses of amplitude
�

1 to trans-
mit data. The channel is an additive white Gaussian noise channel. The receiver uses a
matched filter followed by a sampler and a decision device. For Eb � N0

� 0 � 1 ��������� 8 deter-
mine (and plot) the simulated bit error probability. Compare with the theoretical bit error
probability.

Solution The Matlab code is attached.

0 1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

P
e,

b

Theory 

Simulation 

(b) Repeat the above experiment except with a RC filter with impulse response h
�
t
� �

αe � αtu
�
t
�
. Use the value α � 1 � 256 � T . Compare the result to part (a).

2



0 1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
e,

b

Matched Filter 

RC Filter 

% This program simulates a rectangular pulse shape signal
% in the presence of noise
clear;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Simulation Parameters %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Tb=1; % Bit duration of data

Nbcount=input(’Number of bit errors counted = ’);
Nbp=input(’Number of bits in a packet= ’);
Nsb=input(’Number of samples per bit= ’);

3



fmax=Nsb/(2*Tb) % Simulation bandwidth
N=2*Nbp*Nsb; % Simulation samples
N2=N/2; % Half the number of samples
fs=2*fmax; % Sampling Frequency
df=2*fmax/N % Frequency spacing
dt=1./(df.*N) % Time spacing
t=(1:N)*dt-dt; % Time samples
Tmax=N*dt % Simulation time
f=(1:N)*df-df; % Frequency samples
f2=f-N/2*df;
rb=1/Tb; % Data rate
fc=0 % Center Frequency

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Generate Pulse Shape %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x1f(1:N)=ones(1,N)*1e-80;
x1f(1:N/2)=x1f(1:N/2)+Tb*sinc(f(1:N/2)*Tb).*exp(-j*pi*f(1:N/2)*Tb);
x1f(N/2+2:N)=conj(fliplr(x1f(2:N/2)));
x1t=real(ifft(x1f)./dt);

Peb=zeros(1,9);

for ml=1:9
EbN0dB(ml)=ml-1
EbN0=10ˆ(EbN0dB(ml)/10);
P=1; % Received Power
Eb=P*Tb; % Received Energy
N0=Eb/EbN0; % Noise power

Nberrors(ml)=0;
Np=0;
while Nberrors(ml)<Nbcount

b=sign(rand(1,Nbp)-0.5);
zf=zeros(1,N);
for k=1:Nbp

zf=zf+b(k)*exp(-j*2*pi*f*(k-1)*Tb);
end

x2f=x1f.*zf;

4



x2t=real(ifft(x2f)./dt);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Generate Noise %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sigma=sqrt(N0*fmax);
nt=sigma*randn(1,N);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Add signal to noise %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rt=x2t+nt;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Filter the signal and noise %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rf=fft(rt)*dt;
yf=rf.*x1f;
yt=real(ifft(yf)./dt);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Sample the filter output %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sampling_time=(1:Nbp)*Nsb+1;
bhat=sign(yt(sampling_time));
Np=Np+1;
Nberrors(ml)=Nberrors(ml)+sum(sign(abs(b-bhat)));
if (mod(Np,100) == 0)
[Np, Nberrors(ml)]
end;
end

Peb(ml)=Nberrors(ml)/(Np*Nbp)
petheory(ml)=q(sqrt(2*EbN0))

5



end
hold off
semilogy(EbN0dB,Peb)
hold on
semilogy(EbN0dB,petheory,’r’)

6



% This program simulates a rectangular pulse shape signal
% in the presence of noise with an RC receiver filter
clear;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Simulation Parameters %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Tb=1; % Bit duration of data
alpha=input(’RC Filter Parameter=’);
Nbcount=input(’Number of bit errors counted = ’);
Nbp=input(’Number of bits in a packet= ’);
Nsb=input(’Number of samples per bit= ’);

fmax=Nsb/(2*Tb) % Simulation bandwidth
N=2*Nbp*Nsb; % Simulation samples
N2=N/2; % Half the number of samples
fs=2*fmax; % Sampling Frequency
df=2*fmax/N % Frequency spacing
dt=1./(df.*N) % Time spacing
t=(1:N)*dt-dt; % Time samples
Tmax=N*dt % Simulation time
f=(1:N)*df-df; % Frequency samples
f2=f-N/2*df;
rb=1/Tb; % Data rate
fc=0 % Center Frequency

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Generate Pulse Shape %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x1f(1:N)=ones(1,N)*1e-80;
x1f(1:N/2)=x1f(1:N/2)+Tb*sinc(f(1:N/2)*Tb).*exp(-j*pi*f(1:N/2)*Tb);
x1f(N/2+2:N)=conj(fliplr(x1f(2:N/2)));
x1t=real(ifft(x1f)./dt);

Peb=zeros(1,9);

for ml=1:9
EbN0dB(ml)=ml-1
EbN0=10ˆ(EbN0dB(ml)/10);

7



P=1; % Received Power
Eb=P*Tb; % Received Energy
N0=Eb/EbN0; % Noise power

Nberrors(ml)=0;
Np=0;
while Nberrors(ml)<Nbcount

b=sign(rand(1,Nbp)-0.5);
zf=zeros(1,N);
for k=1:Nbp

zf=zf+b(k)*exp(-j*2*pi*f*(k-1)*Tb);
end

x2f=x1f.*zf;
x2t=real(ifft(x2f)./dt);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Generate Noise %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sigma=sqrt(N0*fmax);
nt=sigma*randn(1,N);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Add signal to noise %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rt=x2t+nt;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Filter the signal and noise %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x3f(1:N/2)=alpha./(alpha+j*2*pi*f(1:N/2));
x3f(N/2+2:N)=conj(fliplr(x3f(2:N/2)));

rf=fft(rt)*dt;
yf=rf.*x3f;
yt=real(ifft(yf)./dt);

8



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Sample the filter output %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sampling_time=(1:Nbp)*Nsb+1;
bhat=sign(yt(sampling_time));
Np=Np+1;
Nberrors(ml)=Nberrors(ml)+sum(sign(abs(b(9:Nbp)-bhat(9:Nbp))));
if (mod(Np,10) == 0)
[Np, Nberrors(ml)]
end;
end %loop for counting errors

Peb(ml)=Nberrors(ml)/(Np*(Nbp-8))

end %loop for different SNR
hold off
semilogy(EbN0dB,Peb)
hold on

3. Simulate the communication system shown below. The system uses square-root raised co-
sine pulses with β � 0 � 35 data amplitude

�
1 to transmit data on the cosine and sine branch.

Show the data waveform, the transmitted signal in the time domain s
�
t
�

and frequency do-
main S

�
f
�
. Plot the output of the mixers at the receiver in the frequency domain (show the

double frequency terms). Plot the waveform at the output of the receiver filters for a sequence
of 8 bits. Make an eye diagram for one of the outputs (use 512 bits for the eye diagram).
Assume T � 1 and fc

� 4 for the simulation. Use a maximum frequency for the simulation
of 16Hz.

Solution:

9



bc
�
t
� � ∑N � 1

l � 0 bc � lδ
�
t � lT

�

bs
�
t
� � ∑N � 1

l � 0 bs � lδ
�
t � lT

�

HT
�
f
�

HT
�
f
�

�
cos

�
2π fct

�

�

� sin
�
2π fct

�

� s
�
t
�

�

�

cos
�
2π fct

�

� sin
�
2π fct

�

HR
�
f
�

HR
�
f
�

b̂c
�
t
�

b̂s
�
t
�

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

time

h(
t)

Pulse Shape

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

frequency

H
(f

)

Spectrum

10



0 2 4 6 8 10 12 14 16
−2

−1

0

1

2

time

x c(t
)

Data Waveform

0 2 4 6 8 10 12 14 16
−2

−1

0

1

2

time

x s(t
)

Data Waveform

0 2 4 6 8 10 12 14 16
−2

−1

0

1

2

time

s(
t)

Transmitted Signal

−8 −6 −4 −2 0 2 4 6 8
−40

−30

−20

−10

0

10

20

frequency

S
(f

)

 

11



0 2 4 6 8 10 12 14 16
−3

−2

−1

0

1

2

3

time

z c(t
)

Output of Mixer at Receiver

−10 −8 −6 −4 −2 0 2 4 6 8 10
−40

−30

−20

−10

0

10

20

frequency

Z
c(f

)

 

0 2 4 6 8 10 12 14 16
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time

y(
t)

Recevier Filter Output

12



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time

y(
t)

Eye Diagram

% This program simulates a raised cosine pulse shape signal
% filtered by an raised cosine filter.

clear;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Simulation Parameters %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Tb=1; % Bit duration of data
%EbN0dB=input(’E_b/N_0 (dB)= ’);
%EbN0=10ˆ(EbN0dB/10);
%P=1; % Received Power
%Eb=P*Tb; % Received Energy
%N0=Eb/EbN0; % Noise power
beta=input(’Raised Cosine Filter Parameter=’);

Nb=input(’Number of bits simulated= ’);
fmax=input(’Maximum frequency of simulation= ’);
N=input(’Number of samples = ’);

N2=N/2; % Half the number of samples

13



fs=2*fmax; % Sampling Frequency
df=2*fmax/N % Frequency spacing
dt=1./(df.*N) % Time spacing
Nsb=Tb/dt
t=(1:N)*dt-dt; % Time samples
Tmax=N*dt % Simulation time
f=(1:N)*df-df; % Frequency samples
f2=f-N/2*df;
rb=1/Tb; % Data rate
fc=4 % Center Frequency

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Generate Signals %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N1=round((1-beta)/(2*Tb)/df)
N2=round((1+beta)/(2*Tb)/df)
h1f(1:N)=zeros(1,N);
h1f(1:N1)=sqrt(Tb*ones(1,N1));
h1f(N1:N2)=sqrt(0.5*Tb*(1+cos(pi*Tb/beta*(f(N1:N2)-(1-beta)/(2*Tb)))));;
h1f(N/2+2:N)=conj(fliplr(h1f(2:N/2)));
h1t=real(ifft(h1f)./dt);

figure(1)
subplot(2,1,1), plot(t(1:8*Nsb)/Tb,h1t(1:8*Nsb));
grid
axis([0 6*Tb -1.5 1.5])
xlabel(’time’);
ylabel(’h(t)’);
title(’Pulse Shape’)
subplot(2,1,2), plot(f2(1:N),fftshift(abs(h1f(1:N))));
axis([-fmax fmax 0 1.5])
grid
xlabel(’frequency’);
ylabel(’H(f)’);
title(’Spectrum’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Generate data for cosine branch %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

bc=sign(rand(1,Nb)-0.5);

14



bcf=zeros(1,N);
for k=1:Nb
bcf=bcf+bc(k)*exp(-j*2*pi*f*k*Tb);

end

xcf=h1f.*bcf;
xct=real(ifft(xcf)./dt);

figure(2)
subplot(2,1,1), plot(t/Tb,xct);
grid
axis([0 16 -2 2])
xlabel(’time’);
ylabel(’x_c(t)’);
title(’Data Waveform’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Generate data for sine branch %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

bs=sign(rand(1,Nb)-0.5);
bsf=zeros(1,N);
for k=1:Nb
bsf=bsf+bs(k)*exp(-j*2*pi*f*k*Tb);

end

xsf=h1f.*bsf;
xst=real(ifft(xsf)./dt);

subplot(2,1,2), plot(t/Tb,xst);
grid
axis([0 16 -2 2])
xlabel(’time’);
ylabel(’x_s(t)’);
title(’Data Waveform’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Mix the signal to a carrier %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

st=xct.*cos(2*pi*fc*t)-xst.*sin(2*pi*fc*t);

15



sf=fft(st)*dt;

figure(3)
subplot(2,1,1), plot(t/Tb,st)
xlabel(’time’)
ylabel(’s(t)’)
grid
axis([0 16 -2 2])
subplot(2,1,2), plot(f2,10*log10(fftshift(abs(sf))))
grid
xlabel(’frequency’)
ylabel(’S(f)’)
axis([-8 8 -40 20])
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Mix the signal back to baseband %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

zct=2*st.*cos(2*pi*fc*t);
zcf=fft(zct)*dt;
zst=-2*st.*sin(2*pi*fc*t);
zsf=fft(zst)*dt;

figure(4)
hold off
subplot(2,1,1), plot(t/Tb,zct)
axis([0 8 -3 3])
xlabel(’time’)
ylabel(’z_c(t)’)
subplot(2,1,2), plot(f2,10*log10(fftshift(abs(zsf))))
grid
axis([-10 10 -40 20])
xlabel(’frequency’)
ylabel(’Z_c(f)’)
title(’Output of Mixer at Receiver’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Filter the signal %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

yf=zcf.*h1f;

16



yt=real(ifft(yf)./dt);

figure(5)
subplot(1,1,1), plot(t/Tb,yt)
grid on
axis([0 16 -2 2])
xlabel(’time’)
ylabel(’y(t)’)
title(’Recevier Filter Output’)
hold off

figure(6)
%subplot(1,1,1), plot(t(1:2*Nsb+1)/Tb,yt(1:2*Nsb+1))
%grid
%yscale=2*ceil(max(yt/2));
%axis([0 2 -2 2])
for k=2:floor(Nb/2)-10
plot(t(1:2*Nsb+1)/Tb,yt((k*2)*Nsb+1:(k*2+2)*Nsb+1))
hold on
end
xlabel(’time’);
ylabel(’y(t)’);
title(’Eye Diagram’)
grid on
hold off

17


