
Lecture 2

Goals:

� Be able to calculate the output of a linear system (convolution) when the

input is a specified function of time (or frequency).

� Be able to work in both time domain and frequency domain.

� Be able to determine the noise variance out of a linear system.
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Filtering, Convolution,

Correlation and Noise

In most receivers in a digital communication system the received signal is

filtered before a decision is made as to the data bit that is transmitted. The

purpose of filtering is to remove as much of the noise as possible without

removing any of the signal.
�

x � t � h � t �
y � t �

�
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Convolution

Mathematically, filtering is the convolution of the input signal to the filter and

the impulse response of the filter. That is, if the input to the filter is the signal

x � t � and the impulse response of the filter is h � t � the output of the filter y � t � is

given by

y � t �

�
∞

� ∞
x � t� α � h � α � dα

�

∞
� ∞

h � t� α � x � α � dα

The above mathematical operation on x � t � and h � t � is called convolution of h

with x.
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The convolution operation is best understood graphically. Consider the output

of the convolution at time t � t1. First the function h � α � is flipped right to left

to yield h �
� α � .

T
α

h � α �

� T
α

h �
� α �

Second the function h �
� α � is shifted to the right by t1 seconds
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� T
α

h �
� α �

t1� T t1 α

h � t1� α �
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Third the flipped, shifted function h is correlated with the input x.

t1 α

h � t1� α � x � α �

y � t �

t1 t
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t2 α

h � t2� α � x � α �

y � t �

t2 t

t3 α

h � t3� α �
x � α �

y � t �

t3 t
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For example if x � t � and h � t � are rectangular pulses of amplitude A and

duration T beginning at t � 0.

x � t �
� h � t �
� ApT � t �
�

�
�

�

A � 0 � t � T

0 � otherwise.

�

�

t

A

x � t �

T

then the output of the filter is a triangular pulse of duration 2T .
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�

�

t

A2T

y � t �

T 2T
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Properties of Linear Systems

� If the output of a linear system is y1 � t � when x1 � t � is the input and the

output of is y2 � t � when x2 � t � is the input then the output due to

α1x1 � t ��� α2x2 � t � is α1y1 � t �� α2y2 � t �

� If the output of a linear system is y � t � when x � t � is the input then the

output due to x � t� τ � is y � t� τ �
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Other Output
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Total Output
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Frequency Domain Analysis

Signals and filtering can also be described in the frequency domain. The

frequency content of a signal is obtained via the Fourier Transform.

X � f �
�

∞

� ∞
x � t � e

� j2π f tdt �

Convolution in the time domain corresponds to multiplication in the frequency

domain and thus

y � t �
� x � t � � h � t � � Y � f �
� H � f � X � f � �

One useful relation between the frequency domain and time domain is

Parseval’s Theorem
∞

� ∞
x1 � t � x� 2 � t � dt �

∞

� ∞
X1 � f � X�

2 � f � d f �
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As a special case

∞

� ∞

� x � t ��
2dt �

∞

� ∞

� X � f ��

2d f �
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Ex. 1: Rectangular Filtering of Rectangular Pulses

Motivation: This is the simplest form of modulation. A single data bit is
transmitted by sending either a positive pulse to represent a 0 or a negative
pulse of duration T to represent a 1. The receiver decides which bit was
transmitted by filtering the received signal with a filter matched to the
transmitted signal and sampling the filter output.

x � t �

� pT � t � �

h � t �

� pT � t � �

y � t �

� h � t � � x � t �
� ΛT � t �
�

�
�

�

�
�

�
�

t � 0 � t � T
� 2� t

T � T � T � t � 2T

0 � otherwise

�
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X � f �

� T sinc � f T � e

� jπ f T � T
sin � π f T �

π f T
e

� jπ f T �

H � f �

� T sinc � f T � e

� jπ f T � T
sin � π f T �

π f T
e

� jπ f T �

Y � f �

� H � f � X � f �
� T 2sinc2

� f T � e

� j2π f T �
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Figure 7: Filtering Rectangular Pulses
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Ex. 2: Raised Cosine Filtering of Raised Cosine Pulses

x � t �
� h � t �
� sin � π � 1� α � t � T ��� 4αt � T cos � π � 1� α � t � T �

π � 1�
� 4αt � T �

2

� t � T

�

X � f �
� H � f �
�

�
�

�

�
�

�
�

� T � 0 � � f� �

1 � α
2T

T
2 � 1� sin � πT � f� 1

2T � � α � � �

1 � α
2T � � f� �

1 � α
2T

0 � otherwise �

y � t �
� sin � πt � T �

πt � T
cos � απt � T �

1� 4α2t2

� T 2 �

II-22



Y � f �
�

�
�

�

�
�

�
�

T � 0 � � f� �

1 � α
2T

T
2 � 1� sin � πT �� f�

� 1
2T � � α � � �

1 � α
2T � � f� �

1 � α
2T

0 � otherwise �

The parameter α is called the roll-off factor and is between 0 and 1. The

(absolute) bandwidth is W �
� 1� α � � 2T . Notice that the output is zero at

multiples of T except at t � 0.
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Figure 8: Filtering Raised Cosine Pulses
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Ex. 3: Gaussian Filtering of a Rectangular Pulse

x � t �

� pT � t �

h � t �

� 1

� 2πσ
exp

�
� t2

� � 2σ2

� �

σ is related to the 3dB bandwidth B by

σ2 � ln � 2 �

π2B

�
y � t �

� Φ �

t
σ �

� Φ �
t� T

σ �
where

Φ � x �
�

x

� ∞

1

� 2π
e

� u2

�

2du �
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In the frequency domain

X � f �

� T sinc � f T � e

� jπ f T

H � f �

� exp

�
� 2π2σ2 f 2

�

Y � f �

� X � f � H � f � �

This is a noncausal filter. In practice a delay must be added to make the filter

implementable.
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Figure 9: Gaussian Filtering of Rectangular Pulses
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Example 4: Spread-spectrum signals

In this example the basic pulse shape has much larger bandwidth. The pulse

shape consists of a sequence of shorter pulses (called chips). The filter is the

time reverse (and delayed) version of the pulse. Notice that the output lasts for

2T seconds and is zero at time 0 and time 2T . Notice also that the output is a

piecewise linear function of time.

Motivation: As in the first example a transmitter can send a 0 by sending the

T second waveform shown below and send a 1 by sending the same waveform

but with opposite polarity. The receiver filters the signal (to remove

out-of-band noise). The filter is matched to the transmitted signal (with a time

reversal). The receiver decides 0 is sent if the filter output at time T is larger

than 0. Otherwise the receiver decides 1.
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Figure 10: Filtering Spread Spectrum Pulses
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Figure 11: Filtering Spread Spectrum Pulses
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Multiuser System

Now consider two users which have different basic signal waveforms.

Consider a filter matched to the basic signal of the first user. The output due to

the signal of the first user alone is shown as is the output due the second user

alone. If these users both transmitted simultaneously then the output would be

the sum of the two outputs.
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Figure 12: Filtering Spread Spectrum Pulses
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In the next figure we expand the filter output to show more detail. From this it

is evident that the output due to the interference is also simply a piecewise

linear function.
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Figure 13: Filtering Spread Spectrum Pulses
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If we just assume that the filter is sampled at time T and that the filter is causal

h � t �
� 0 � t � 0 then

y � t �

�

t

� ∞
h � t� α � x � α � dα

If the filter has finite response, say for T seconds then

y � t �

�
t

t � T
h � t� α � x � α � dα

The desired signal is the output sampled at time T .

y � T �

�

T

0
h � T� α � x � α � dα

This can be implemented with a correlator as shown below
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�

t
t� Tx � t � y � t �

h � T� t �

Figure 14: Correlator Structure
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In a digital communication system it is usual for the received filter to be

matched to the transmitted signal. In this case, if s � t � is the transmitted signal

and is of duration T beginning at 0, we sample the filter output at time T and

h � t �
� s � T� t � . This is called the matched filter. The filter output is

y � t �
�

∞
� ∞

h � t� α � s � α � dα �

t

t � T
h � t� α � s � α � dα

�

t

t � T
s � T�

� t� α � � s � α � dα

�

t

t � T
s � α�

� t� T � � s � α � dα

(This is the autocorrelation of the signal s � t � ). The desired signal is the output

sampled at time T .

y � T �
�

T

0
h � T� α � s � α � dα �

T

0
s � α � s � α � dα
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�

T

0
s2

� α � dα
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In a spread-spectrum system the signal has the form

s � t �
�

N � 1

∑
l� 0

alψ � t� lTc �

so the impulse response of the matched filter has the following form

h � t �
� s � T� t �
�

N � 1

∑
l� 0

alψ � T� t� lTc �

where N is the number of “chips” per bit, 1 � Tc is the chip rate, and NTc � T is

the data bit duration or the inverse data rate. In this case the implementation of

the matched filter can be simplified as follows. Let s � t � be the filter input then

y � t �

�

∞

� ∞
h � t� α � s � α � dα

�

∞

� ∞

N � 1

∑
l� 1

alψ � T� t� α� lTc � s � α � dα

II-39



�

N � 1

∑
l� 0

al

∞

� ∞
ψ � T� t� α� lTc � s � α � dα �

Let x � t � be the output of a filter with impulse response ψ � Tc� t � then

x � t �
�

∞

� ∞
ψ � Tc� t� α � s � α � dα �

Now it is clear that

y � t �
�

N � 1

∑
l� 0

alx � t� � N� 1� l � Tc � �

Thus the matched filter can be implemented as a filter matched to the chip
waveform followed by a weighted sum. Since we are interested in the sample
only at time t � mT we only need the samples of the chip matched filter at
multiples of Tc. For example at time t � T the output is

y � T �

�

N � 1

∑
l� 0

alx � � l� 1 � Tc �
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At time t � mT the output is

y � mT �

�

N � 1

∑
l� 0

alx � � m� 1 � T� � l� 1 � Tc �

y � mT �

�
mN

∑
j�

�

m � 1

�

N � 1

a j � 1 �
�

m � 1

�

Nx � jTc �

If the spreading sequence is periodic with period N so that a j � N � a j then

y � mT �

�

mN

∑
j�

�

m � 1

�

N � 1

a j � 1x � jTc � �
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ψ � t � � ∑mN
j�

�

m � 1

�

N � 1

a j � 1

t � jTc

x � jTc �

y � MT �
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s � t �

+1

-1

t
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h � t �

+1

-1

t
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Multiple Bits
s � t �

+1

-1

t

II-46



Multiple Bits

y � t �

t
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Multiple Bits

y � t �

t
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Noise

All communications systems has some amount of noise. All electrical systems

have random thermal noise due to motion of electrons because the system is

not at absolute zero temperature. This noise is usually modeled as having

power at all frequencies but in actuality at very high frequencies the power

decreases (in the optical range of frequencies).

The model widely used for thermal noise is that of zero mean white Gaussian

noise. Since only the frequency band of the transmitted signal is of interest the

noise outside this band is not important. For all systems considered here we

model the noise as having equal power at all frequencies. In addition the noise

will have zero mean or average.
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The power spectral density function of a random signal is the amount of

power in the signal as a function of frequency. The autocorrelation measures

the correlation between the noise at different points in time. For noise like

signals the autocorrelation does not depend on the time but just the time

difference between two samples. In this case (and assuming zero mean) the

process is called wide-sense stationary.
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Mathematical definitions:

RN � τ �
� E � N � t � N � t� τ � �

The power spectral density is the Fourier Transform of the autocorrelation

function.

SN � f �
�

∞

∞
RN � τ � e

� j2π f τdτ

RN � τ �
�

∞

∞
SN � f � e j2π f τdτ
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Example

White Noise :

RN � τ �
� N0

2
δ � τ � � SN � f �

� N0

2

�

�

RN � τ �

N0 � 2����

τ
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�

�

SN � f �

N0 � 2

f
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Correlated Noise

RN � τ �

� Λ � τ � T �
�

�
�

�

1� � τ �

T � τ� � T

0 � τ� � T

�

SN � f �

� T sinc2
� f T �

� T
sin2

� π f T �

� π f T �

2
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RN � τ �

� T T τ
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SN � f �

� 2
T

� 1
T

1
T

2
T f
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Noise into linear systems

Now consider noise at the input to the receiver.

�

X � t �

H � f � �

Y � t �

The power spectral density of the output of the filter is determined from the

power spectral density at the input to the filter and the transfer function of the

filter.

SY � f �
� � H � f ��

2SX � f �
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The autocorrelation is given by

RY � τ �

� E � Y � t � Y � t� τ � �

� E �

∞

� ∞
X � t� α � h � α � dα

∞

� ∞
X � t� τ� β � h � β � dβ �

�

∞
� ∞

∞

� ∞
E � X � t� α � X � t� τ� β � � h � α � h � β � dαdβ

�

∞

� ∞

∞

� ∞
RX � τ� γ� β � h � γ � h � β � dγdβ

RY � τ �
� RX � τ � � h � h̃ �

where h̃ � t �
� h �

� t � �
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At any particular time the output due to noise alone is a random variable with

a certain density function. The mean of the output is the convolution of the

mean of the input signal with the impulse response of the system. The

variance of the output is

σ2 � Var � Y � t � � � RY � 0 �

�

∞

� ∞
RX � β� γ � h � γ � h � β � dγdβ

�

∞

� ∞

� H � f ��

2SX � f � d f

For the case when the noise is white with power spectral density N0 � 2 the

variance of the output is

σ2 � Var � Y � t � � � N0
2 �

∞� ∞ h2

� γ � dγ � N0
2 �

∞� ∞� H � f ��

2d f
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Example: Ideal Brickwall Filter

�

f

H � f �

N0 � 2

�

��

W

A
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σ2 � A2WN0

(A filter for which the noise variance is σ2 but does not have the brickwall

shape is said to have noise bandwidth σ2

� � A
2N0 � where A is the peak output).
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Example
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Figure 16: Filtering of Noise in Time and Frequency Do-
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Gaussian Density

If η is a Gaussian distributed random variable with mean µ and variance σ2

then we can calculate various probabilities involving η. In particular

P
�

η � x

�

�

x

� ∞

1

� 2πσ
e

�
�

w � µ

�

2

�

2σ2
dw

�

�

x � µ

� �

σ

� ∞

1

� 2π
e

� w2

�

2dw
� Φ �

x� µ
σ �

� Q �
� x� µ

σ �

where

Φ � α �

�

α

� ∞

1

� 2π
e

� w2

�

2dw
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Q � α �

�

∞

α

1

� 2π
e

� w2

�

2dw
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Example 2
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Example 3
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Example 4
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Example 5

−2 −1 0 1 2 3 4 5 6
−8

−6

−4

−2

0

2

4

6

8

x(τ)

h(t−τ)

x(τ) h(t−τ)

conv(x,h) 

t

II-73


